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Abstract. In this paper we consider semilinear parabolic boundary value problems having non-
smooth and nonmonotone behaviour and memory effects. The mathematical problem can be for-
mulated and studied by using the notions of hemivariational inequality (based on the generalized
gradient in the sense of F.H. Clarke) and the hysteresis operator. We establish two general existence
results for such problems. Applications from mechanics illustrate the theory.
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1. Introduction

The theory of hemivariational inequalities has been developed in the last fifteen
years in order to fill the gap existing in the variational formulations of B.V.P.s when
nonsmooth and generally nonconvex energy functions are involved in the formula-
tions of the problem. For applications and for their mathematical treatment we refer
to[18, 21, 23]. When the energy functions become convex, then the hemivariational
inequalities become variational inequalities. It is well known that, due to the lack
of convexity, compactness arguments must be applied for the mathematical study
of the corresponding hemivariational inequalities. Until now eigenvalue problems
for hemivariational inequalities have been studied [5, 15, 16] as well as parabolic
and hyperbolic problems [6, 12, 13, 23].

Due to the lack of convexity and smoothness the hemivariational inequalities
have proved to be an effective tool for the treatment of problems with nonmonotonic-
ity and/or with multivaluedness. In Panagiotopoulos [23, p. 121] it is shown how
the hemivariational inequalities can describe loading and unloading processes, whereas
in [19] and [21, p. 209] it is explained how a sequence of variational inequalities
can describe the classical hysteresis phenomenon with closed and/or open loops.

Parallel to the evolution of the theory of hemivariational inequalities the theory
of hysteresis B.V.P.s has been developed. We refer in this respect to the corre-
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sponding references [1, 7, 25]. This theory is based on the notion of the hysteresis
operator introduced by M.A. Krasnoselskii, which in many cases leads to dynamic

variational inequalities and does not even need to appear explicitly [1, p. 5]. In other

cases the hysteresis operator is equivalent to a system of infinitely many variational
inequalities.

A comparative study of the limitation and of the possibilities of the theory
of hemivariational inequalities with the theory of hysteresis is necessary, espe-
cially with respect to the possible applications in Mechanics, Engineering and
Economics, and it will be the subject of a forthcoming paper. The second author
of the present paper, who introduced the notion of hemivariational inequalities,
has strong evidence that the two approaches are complementary concerning the
treatment of the nonmonotone behaviour of many physical problems and of the
phase transition problems: think of a hysteresis operator, which does not have
the piecewise monotonicity or the continuity property, and which can describe
infinitely many hemivariational inequalities.

In the present paper we will study a parabolic B.V.P. resulting from the superpo-
sition of Clarke’s generalized gradient, giving rise to a hemivariational inequality,
with a continuous hysteresis operator. The organization of the paper is as follows.
In Section 2 we recall some basic notations and definitions from the nonsmooth
analysis and from the theory of the hysteresis operators. In Section 3 we give
the physical motivation for the study of this new type of B.V.P.s. This leads to
variational formulations, which are hemivariational inequalities involving a hys-
teresis operator. In Section 4 we formulate the problem under consideration and
state the existence results of Theorems 1 and 2. We have the hysteresis operator
in a lower order term, i.e. we do not have time derivatives of the hysteretic term.
These types of problems are called semilinear B.V.P.s. with memory, distinguished
from quasilinear B.V.P.s with memory, in which the hysteresis operator appears
in a higher order term (see this terminology in [25]). The fundamental difference
between these two classes is that if the hysteresis operator is in a higher order
term, then it has to be piecewise monotone. The difference between Theorem 1
and 2 is that in Theorem 1 we assume that the nonmonotone behaviour obeys the
linear growth condition (cf. (J2)), while in Theorem 2 we have only the directional
growth condition (cf. (J4)) for nonmonotonicity (which means roughly speaking
that it is ultimately increasing). In Section 5 we prove these results. In the proof
of Theorem 1 we can apply the standard approach for parabolic problems with
hysteresis (see [1, 25]). The proof of Theorem 2 is more involved: the nonsmooth
and nonmonotone term has to be regularized and truncated. Moreover, we also need
to use the Galerkin method.
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2. Preliminaries
2.1. GENERALIZED DERIVATIVES

Let us recall the definitions of the generalized directional derivative and the gen-
eralized gradient of F.H. Clarke for a locally Lipschitz functign R — R from

[3]:
() The generalized directional derivative gfat& in the directions, denoted
g°(&; n), is defined as follows:

e ) = limsyp £EFTD Z86D
’ & —E 10+ T

(i) The generalized gradient gfat&, denotedg(€), is the subset oR given
by

0g¢)={reR:g°E;n) >t VnekR]L

2.2. HYSTERESIS OPERATORS

We recall from [1] some basic concepts of the continuous hysteresis operators,
which are needed to formulate the problems under consideration (the continuity
means that the input and the output functions of the hysteresis operator are contin-
uous). For extensive treatment and examples of hysteresis operators, like Preisach,
Prandtl, elastic—plastic operators, we refer to [1, 7, 25].

Let [0, T'] be a given time interval. We denote Iay,, ([0, T]) the set of all
continuous angbiecewise monotonfeinctions on[0, T']. A functionwv : [0, T] —
R is piecewise monotone if there existsn@notonicity partitionA = {#}!_;, 0 =
fh <t < --- <t, =T such thaw|,_, ,; is monotone for ali = 1,...n. The
monotonicity partitionA of v is called thestandard monotonicity partitioof v if
the number of the subintervalsis minimal.

We denote bys the set of all strings of real numbers and )y the set of all
alternating stringsof real numbers, i.e.

Sa={(s0,--- ) : (i1 —8)(si —si_1) <0, 1 <i <n—121andn € N}.

We define theestriction operatorp, : C,, ([0, T]) — S4 as follows

pa(v) = (v(to), ... , v(tn)), 1)
where {1;}!_, is the standard monotonicity partition of Further, the so called
prolongation operatorr, : S4 — C,,([0, T]) maps the string = (so, ... , s,)

to the linear interpolate function : [0, T] — R of the points(%, v(%) =),
i=0,...,n.
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In order to be able to formulate the definition of thesteresis operatore need
to introduce theate independent functionals. A function# : C,,,,([0,T]) — R
is called rate independent if it holds

H[v o p] = H[v] (2

forallv € C,,,([0, T']) and for all continuous increasing functiogs [0, 7] — R
satisfying¢(0) = 0 and ¢(T) = T. This implies that only the local extremal
values ofv are important for the#¢[v]. Therefore, it is easy to see that the following
bijective correspondence [1, Proposition 2.2.5]

H=Hops, WithH =Hom, (3)

holds between the function# : S, — R and the rate independent functionals
H: Cpn([0,T]) — R.

DEFINITION 1. An operatorw : C,,([0,T]) — C([0,T]) is said to be a
hysteresis operatoon C,,, ([0, T']) if there exists a rate independent functional
J called agenerating functionabf ‘W such that

Wlvl(t) = H[v,], forallz € [0, T]andv € C,,,([0, T]), 4)
in which
@, o<e<,
WS =100, r<E<T.

Further, an operatoWw : S, — S is called ahysteresis operatoon S, if

W(s) = (H(s0), H(s0, 1), ..., H(s)), foralls=(so,...,5,) € Sa,
%)

where# = Horn, called agenerating functionabf ‘W and.# is a rate independent
functional onC,,, ([0, T']).

These unique generating functionasand # are often called thénal value map-
pingsand are denoted by, and Wf, respectively. Due to (3) we also have a bi-
jective correspondence between the hysteresis opef@tdefined orC,,, ([0, T'])

and W on S,. Therefore, in the sequel we can use the same notatidor both

‘W and W and, consequently, the notatiofi; for both W, and W, without any
danger of confusion. In the end, we remark that the hysteresis operators defined
onC,,([0, T]) can be extended to the set of all continuous functGq®, 7']) by

using the density of,,,,, ([0, T']) in C([O, T']) (see [1, 7, 25]).

3. Physical motivation of the present paper and the corresponding problems

The semipermeability problem with hysteretic effects is the pilot problem in this
paper. Semipermeability problems were first studied by Duvaut and Lions [4] for
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Figure 1. Semipermeability relations without hysteretic effects.

monotone semipermeability conditions. They lead to variational inequalities con-
nected with theA-operator and they arise in heat conduction, flow through porous
media, and electrostatics. Analogously, they arise in control problems in heat con-
duction, pressure control in hydraulics etc. The case without monotonicity leads to
hemivariational inequalities and was first studied by Panagiotopoulos in [20]. We
consider an open bounded connected sufasetR referred to a fixed orthogonal
Cartesian coordinate systemx{Q,x3 and we formulate the equation

~Au=f (6)
for the stationary problems. On the Lipschitz boundargf <2 we assume that

u=0 @
and we assume that

f=hA+ 1+ fa ®)

where f is given, f1 is related ta: with the relation
—fi€dj(x,u(x)), InQCQ, C)

where j is a locally Lipschitz (i.e. generally nhonconvex and nonsmooth) energy
function anddj denotes its generalized gradient with respect to the second variable.
We know [18, 21, 23] that (9) describes, e.g. in the language of heat-conduction
problems, the behaviour of a semipermeable membrane of finite thickness occupy-
ing a partQ2; of 2, or the behaviour of temperature controller producirig,neat
in order to regulate the temperature in the interio€0fTo give an example let us
consider Figure la.

When the temperature is < h the region$2; supplies constant heat per unit
volume, sayi. Whenu = h heat is supplied for constant temperature until a given
value b is reached, the supplied heat-temperature relation follows a parabola as
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Figure 2. Superposition of nonconvex superpotential laws with hysteresis laws.

in Figure 1a, until the temperatutg is reached. We have a change of heat from
value—c to —d with the temperature remaining constant- 4, and then the heat
supply remains constant, whereas the temperatanay increase. Analogously, in
Figure 1b a temperature-control problem is depicted in which the temperature is
regulated in order to deviate as little as possible from the intémak].

We assume further that

—fa= Wr(w_1(x), u(x); x), inQy, (10)

where W, is the final value mapping of the hysteresis operatarThe function

w_1 :  — R is called theinitial value functionof the hysteresis operatay
defining the initial state of the hysteresis operator. The additioffs ahd f3 gives

rise to hysteresis mappings of much more general form than the ones treated until
now. We can mention that in the one-dimensional case, like here, the hysteresis
curves do not need to be piecewise monotone and may contain filled-in jumps (cf.
e.g. Figure 2a, b).

REMARK 1. Itis assumed that filled-in jumps in mathematical models and laws
(cf. e.g. Figures 1a, b, 2a, b) are not attributed to changes to the physical nature of
the systems. For instance, in mechanical problems such jumps can cause dynamic
effects analogous to impacts.

In the multi-dimensional case of hysteresis operators (cf. [7, p. 151] the mul-
tidimensional hysterons) the consideration of sums of hysteresis operators with
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nonconvex superpotential laws derived by means of the notion of the generalized
gradient of Clarke generalizes the theory developed by the researchers on the hys-
teresis operators. Indeed one can avoid the convexification approach used in [7].
Moreover the direct treatment of the problem without convexification may lead in
many cases to results under less stringent assumptions, e.g. by applying the notion
of pseudomonotone multivalued mapping, analogous to [18]. Following also the
method of Naniewicz related nonconvex star-shaped sets (cf. [18, p. 223]) one can
extend the results of [7] to the case of nonconvex star-shaped characteristics (for
this notion see [7, p. 156]). Note that generally the notion of nonconvex superpo-
tentials can more easily deal with three-dimensional honmonotonicities than the
notion of hysterons, especially with respect to mechanical laws.

Another possibility offered by the superposition of a nonconvex superpotential
law with a hysteresis law is that one can consider “fuzzy hysteretic effects”. We
mean (cf. [23, p. 77]) that théf, u} diagram is defined by a set of points lying
within a region of given width around the initial graph of the hysteretic law. In
this casej must have a special form defined first by Rockafellar ([24, 23, p. 43)).
Let! be an open subset of the real liReand let.M be a measurable subsetiof
such that for every open and nhonempty sulisett/, meag/ N M) and meas/ N
(I — M)) are positive. Leg(u) = {b1, ifu € M, — by, ifu ¢ M}andju) =
[O” gw*) du*. Thenj is Lipschitzian andj (u) = [—b,, b,] for everyu € 1,i.e. we
have an infinite number of filled-in jumps in Hemivariational inequalities with
fuzzy superpotentials have been already treated in [18, p. 132].

The aim of the present paper is the study of the following B.V.P. of the parabolic
type: The problem (P) is defined as follows

u'(t) +w(t) + Au(t) + E(@) = f(1), a.e.in(0,T),
w(x,t) = Wux,); x](®), Vtel0,T], aexceq,
E(x,1) €dj(x,ulx,t), ae(x,t)eQr=2x(0,T7T),
u(0) = uo.

Since we apply the method of finite differences for the time derivatives in the
existence proofs we obtain as a byproduct the existence of the solution for the
sequenceg(P);} of the corresponding elliptic problems of (P) (of course, some
obvious moadifications have to be done for the assumption® pfA and j; cf.
Section 5.1 Step I): Let; be a solution of (P),i = 1, ... ,n—1, then the problem
(P); is defined by

w, + Au, + 8, = fn
W, (x) = Wruo(x), ur(x), ..., up_1(x), u,(x); x), a.ex € 2,
E,(x) € 9j(x,u,(x)), aexcec.

In the above B.V.P.s we have assumed that= Q2 for the sake of simplicity.
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4. Mathematical formulation of the problem

Let 2 c RY be a bounded domain with Lipschitz boundasy. Let V be a Hilbert
space such that the imbeddifg c H*(R2) is dense and continuous. Th&hC
H = L?%(Q) € V* forms an evolution triple. We denote ty ||y, || - ||y« and| - |4
the norms ofV, V* and H, respectively. The duality pairing betwe&handV* is
denoted by-, -)y and the inner product ih?(Q) by (-, ) .

Letk € N. We suppose that there exists the Galerkin b@sis. .. , ¢, ...} of
C>®(Q) NV such that 2, Vi, Vi = {¢1, ... , ¢}, is dense il = V N C(Q) in
the following sense

VoeV 3wl v eViiv — v, inVandC®). (11)

Moreover we assume th&t N C(Q) is dense inv.

For the space-dependent hysteresis opef#torx], which means that the hys-
teresis operator can vary with the space variahl&ve impose the following as-
sumption:

(H) The hysteresis operatd¥[-; x] is continuous or€ ([0, T']) for everyx € Q

and the parametrized final value mapping

(s5x) > We(s; x)
is measurable for all = (sg, ... ,s,) € S andr € N and satisfies

|We(s; x)| < y(x) +c1'rgax ls;], forallx e Q, s e Sandn € N,
i=0,...,n

wherey e L?(Q) andc; a positive constant.

REMARK 2. We refer to [1] (e.g. Proposition 2.4.9 and Remark 3.1.1) for exam-
ples of Prandtl and Preisach type hysteresis operators and to [7] for examples of
hysterons which satisfy the conditions (H). Indeed, those results show that (H) is
not a very restrictive condition for the continuous hysteresis operators.

Let A be an operator frony¥ to V* satisfying:
(Al) The operatod is linear, bounded and symmetric.

(A2) The operatorA is coercive, i.e. there exist constamts> 0 andcz > 0
such that

2 2
(Av,v)y 2 c2llvlly —cafvly, YveV.

For a functionj : 2 x R — R we impose the following conditions:
(J1) The function satisfies the Caratheodory type conditions
(i) Forall¢ € R the functionx — j(x, §) is measurable ofe.
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(i) Foralmostallx € 2 the functiont — j(x, &) is locally Lipschitz
onR.

(J2) Linear growth condition: There exists a positive constaisuch that
n€dj(x,§) = Inl < ca(l+ 18]

for a.e.x € Q and eacl§ € R. Moreover, the function (-, 0) € LY(R).

(J3) Integrability conditions: There exists a functiBn @ x R, — R such
that

(i) B(,r) e L) for eachr > 0,
(i) If " < r” then for almost alk €

Bx,r') < Bx,r")
and for almost alk €
lj(x, &) —je, mI<B&x, rIE—nl, V& neBO,r), r>0.

Moreover, the functiory (-, 0) € LY().

(J4) Directional growth condition: There exists a nonnegative funatipn
Q — R such thatx; € L%(2) and for almost alk € Q

Jox, 8 —8) Saa()(A+18) VEeR

REMARK 3. Let us suppose that the conditions (J3) and (J4) hold. Using a sim-
ilar reasoning as in [18, Remark 5.6] it is possible to show that there exists a
nonnegative functiom, : 2 x R, — R such that

(i) az(-,r) e L3R) for eachr > 0.

(i) If " < r” then for almost alk €
oo(x, ') < aa(x, r”)
and for almost alk € Q

JP@ & —8) Soax, )1 +15D, YEeR, neBOr), r=>0
12)

REMARK 4. Letd be a measurable function frofa x R into R such that

¥ (§) = ess supqlf(x, §)|
belongs taL? (R). If the following growth condition

loc

€SS SUR. £)cqx(—0o—5)0 (X, §) <O L ESSINf, £)canE o0l (X, &) (13)
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is satisfied with some positive constanta locally Lipschitz function defined by

&
J(x.£) =/0 6(x. ) dn

fulfills the assumption (J1), (J3), (J4). The condition (J2) is guaranteed ahbsif
a function of¢ obeys a similar linear growth condition.

Further, we state the following assumptions:

(11) The initial valueug € V andwo = Wy(w_1(-), uo(-); -) € H.

(12) The initial valueug € V N L>(Q2) andwg = Wy (w_1(-), uo(-); ) € H.
There exists a sequen@ey }, ugr € Vi, satisfying

ugr — ug, Strongly inH

andwo, = We(w_1(-), ug(-); -) € H. Moreover,{ug} is bounded invV
andL*(Q).

(F) Letf e L?0,T; H).

The functionw_; : @ — R is the initial value function of the hysteresis operator
W representing the initial state of the hysteresis operator befaveu, is applied
toit at timer = 0.

Let us define¥ = HY(0, T; L?(2)) N L>(0, T; V). Now we can introduce a
weak formulatiorof the problem (P).

DEFINITION 2. A functionu € Y is a solution of the problem (P) if
(i) There existw € L?(22; C([0, T]) andE € L*(Qr) N L3(0, T; V*) such
that

T T T
/ (u' (1), v(t))y dt + / (w(r), v(t))p dt + / (Au(t), v(t))y dt
0 0 0

T T
—{—f (B(), v(r))y dt = / (f@),v(@)ydt Vv e L*0,T; V);
0 0

(14)
w(x,t) = Wu(x,); x](t), Vtel0,T], aexcec; (15)
E(x,1) € 3j(x,u(x,t)) a.e.(x,t) € Or. (16)

(i) The functionu satisfies the initial condition (0) = uo.

In this paper we prove the following existence results for (P).

THEOREM 1. Let hypotheses (H), (Al), (A2), (J1), (J2), (11), (F) be satisfied.
Then the problem (P) has at least one solution. Moreover, the fun&ibalongs
to L>°(0, T; H).
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THEOREM 2. Let hypotheses (H), (Al), (A2), (J1), (J33), (J4), (12), (F) be satis-
fied. Then the problem (P) has at least one solution.

5. The proofs of the main theorems
5.1. THE PROOF OF THEOREML

We use the standard approach for parabolic problems with hysteresis: time-discretization,
a priori estimates and limit procedure (see [1, 25]).

First, we define the semidiscrete problem,(BY applying the implicit time-
discretization: Lein € N. We setk = T/m and

nk
i) = }/ fx,t)d:, foralln=1,...,m, a7
k Jo—k
ug(x) = up(x). (18)

The problem (R)is formulated as follows: Find; € V andwy, E; € H for all
n=1,...,msuch that

n_ ,n-1

% Fwl 4 Aul + Bl = f, in V¥, (19)

wi(x) = Wru(x), up (x), ..., uf(x); x), ae.ing, (20)

Er(x) € 9j (x, uf(x)), a.e.in. (21)
Step I: Solvability of (R) For each time step = 1,... ,m we can rewrite the
equation (P) as follows: Findu} € V andwy, E} € H such that

kAU +uf + kw} + k8 = kf' +ul™t, inv*, (22)

wi(x) = Wr@d(x), up(x), ... ,uf(x); x), a.e.ing, (23)

Ei(x) € 9j(x,ui(x)), a.e.inQ. (24)

We assume that Problems (22)—(24) are solved for the previous timeisteps
1,...,n — 1. Therefore, the functioné?, e, u;"l € V are known.

We use the following result [18, Theorem 4.25] for the static hemivariational
inequalities:

THEOREM 3. Let B be a pseudomonotone operator fréfnto V*. Suppose that
there exists a function : R, — R with ¢(r) — oo asr — oo, such that for all
v eV, (Bv,vy = c(vlvlvlv, g is an element oF*, andj : @ x R - R
fulfills the conditions (J1), (J2) and (J4). Then the hemivariational inequality

Bu+E=g inV* and E(x)e€dj(x,u(x)), a.e.inQ

has a solution.
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Let us first recall the definition of the pseudomonotonicity for single-valued opera-
tors from [18, p. 25]. LeB be a mapping fron¥ into V*. ThenB is pseudomonotone
if the following hold:

() B is bounded;

(i) If {u;} is a sequence i¥ converging weakly ta: and lim sugBu;, u; —
u)y < 0, then it holds that

Iiminf(Bui,u,»—v)v > (Bu,u —v)y, YvelV.

In order to apply Theorem 3 we define

B = Bl+BZ’

1
Biv :=kAv + Ev,

(Bov)(x) = b(x, v(x)) 1= kW, @d(x), ui (x), ... , ul " *(x), v(x); x),
_ 1

Jx.§) =kj(x, &) + Zsz,

g = kff +ui

We assume the time increménis so small that it satisfiekc; < 1/2. Then,B;
is linear and coercive(Biv, v)y > c2||v||%, for all v € V) and, consequently,
maximal monotone an)(B,) = V (D(B1) = {v € V : B1(v) # @}). Thus, [18,
Proposition 2.3] implies thaB, is pseudomonotone.

Using (H) and the fact that?, ... , ufl belong toV we see that the function
b : Q@ x R — R satisfies the classical Carathéodory conditions and the growth
condition

Ib(x, £)] < kj(x) + kCy|g|, forall (x,£) e RY x R, (25)

wherey is a nonnegative function froh?(Q2) andC; a positive constant. There-
fore, B, is a continuous and bounded Nemyckii operator flof2) to L2(2) (see
e.g. [26, Proposition 26.7]), which, of course, implies tBatis pseudomonotone
as an operator froy to V*.

Next we apply the result that the sum of two pseudomonotone operators is
pseudomonotone (see e.g. [18, Proposition 2.4]B td-urther, it is easy to see
that B satisfies the coercivity in the sense of Theoremi3ig small enough.

Finally, we observe thaj satisfies (J1), (J2) and (J4) &fis small enough.
Thus, all the assumptions of Theorem 3 are satisfied and Problems (22)—(24) have
solutions.
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Step II: A priori estimatesn derivation of the a priori estimates we apply repeat-
edly the classical relations:

1 1 1
(a —b)a = Eaz - E192 + E(a —b)?, Va,belk (26)
1
ab < ga® + £192, Ya,beR, Ve>O0. (27)

We multiply the Equation (19) by} — u;’* and sum it fromn = 1ton =1,
1 <1 < m. Then we estimate the result term by term.

First, we treat the term coming from the hysteresis operator. The use of the
Cauchy—-Schwartz inequality and (27) yield

; , 12 a1\ 2
n o.n n— n Up — U
’?_l(wk’uk — Uy 1)H < <n§_1k|wk|il> (E k £ X £ ‘H) (28)

n=1

n __ n—l 2
Up — Uy ‘
k H

for all ¢ > 0, whereC1(¢) > 0 is a constant depending only enFor estimating
|lwi | in (28) we apply the inequality of (H) giving

1
< Cie) Y klwpl%
n=1

lwi ()] < y(x) +c1 sup [uf(x)]. (29)
0<ikn
Setting
Vi () = luo()| + Y luf(x) —uf ‘(). i=0,....n (30)
Jj=1

and noting that the triangle inequality implies

lut ()] < vi(x) Vi) < - < ofx), i=0,...,n (31)
we can simplify the relation (29) as follows

lw (O] < ¥ (x) + c1vf (x). (32)
Then we substitute (32) into (28) yielding

! l
Z(wz, wp —u g < 201 Ty 5 + 2C1(e)ed Y klv} 1%

_”k | . (33)
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Next, we show an auxiliary inequality. Indeed, due to an easy calculation we
get that

l [

I 0 -1
el = vle =Y {1vfle — [vf e Zw — 0} M

n=1
1 l I’l 1 2
Tz< ‘ ) . (34)
=1

By means of a useful relatign! — v |y = [u} —u}~*|; and the inequality (34)
we conclude that

E

NI

l n - n l n
Z(uk—uzl " le> _ kuk—uz 1‘2=Zk vl — vy 1‘2
i k Y — k Ho— k H

> o luly = Caluoly. (35)
The use of (26), (A1) and (A2) implies
1 1.
Z(Auz,uz EZ (Aul, ulyy — (Aup= b ul ™y
n=1 n=1

AW —uf ™, uf —ulhy)

1 1
E(Auk’ uk)V - E(Au()v uO)

1
+ 2;<A<uz — Y, ul — w7y

I
1
12 ~1y2
_CZ||Mk||v+_CZE llug —uy 1%
2 2 ~

(Aug, uo)v

1 1 «
+ (—EC3IM§<|§I - §C3Z lup —up™ |H> . (36)
n=1

WV
I\)|I—‘A
=
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In (36) we need further estimates faf, |3, and>"" _, |u} —u}~*|%,. Applying once
again (26) we get

1
1 1 1 n—
Sllfy = Shedlh + 5 )i — w7
n=1

l
1
2 -1,2 -1,2
=D 5 (gl = 7 o+ g — )

n_ ,n-1
(% ug> . (37)
n=1 H

By rearranging the terms in (37) and using (27) we have

Il
=~

n_ n-1o
Up — Uy |
k

1 I
1 12 1 n n—1,2 1 2
§|uk|H+§;|uk—uk |H<§|uo|H+eZlk .,

!
+ Ca(e) Y kluj 3. (38)

n=1

After substitution of (38) in (36) we can conclude

I l
n— l l n—
> (Aup up —uThy > (Ecznuin% + 52 ) Nl — 1||2v)

n=1 n=1
[ n n—1
N U~y ‘2
c3¢& Zk 2 o
n=1
l
— 3Ca(e) Y klupl3 — Ca (39)

n=1

Furthermore, the Cauchy—Schwartz inequality and (27) imply

1/2
n_ ,n-1,
Up — Uy ‘
k H

I I vz .y
Oy —u e < (Zk|fk"|§,) (Zk
n=1 n=1 n=1

n—1

l n 5
u, —u
< C3(8)+82k %‘H
n=1

(40)
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Similarly, and taking into account the linear growth condition (J2), we have

1/2

! n n—1 o

e 41
k 1-1) (41)

! vz,
~ 71 L]
> (Epup —uf Mg < <§ :k|az|i,) <§ k
n=1 n=1

n=1

! l
< Cyle) <1+ ZkluZIfq) +ey k

n=1 n=1

n n—1
ug —uy |2

k ‘H'

Summarizing the estimates (33), (39), (40), (41) and applying the continuity of
the imbeddingV ¢ H we deduce that

u — u"*]- 2 1
%L{ + <_C2 — C5(8)k) ”ugc”%/

I
(1—Cse) Y &k 5
n=1

1 !
-152
+ 52 ) g — w7
n=1

-1 I
< Co(e) + Cre) Y kllugll3 + Ca(e) Dkl 3. (42)

n=1 n=1

Finally, as a result of (35) we arrive at

1 2 1,2 1 2
oT (1— C3e — 2T Cg(&)k) |vi |y + 5¢2 = Cs(e)k ) llug |y

1 !
-1p2
+ 502 )l — w7
n=1

-1 -1
< Co(e) + Cre) Y kllugll3 + Ca(e) Dkl 3. (43)
n=1 n=1

We first choose small enough such that-2 C3e > 1/2. This fixes the constants
C;(¢). Then, we choosé& so small that the coefficientél — Cze — 2T Cg(e)k)

and(1/2c, — Cs(e)k) are positive. After that we can apply the discrete version of
Gronwall’s lemma implying

max |v"|% < const, 44
1§ngml Wy < (44)
max [|lu} |2 < const, (45)
<nm

m
> " llup — up M < const (46)
n=1
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for all 0 < k < kq. Further, taking into account (44), (45) we can derive from (42)
that

_ =15
k‘M‘ < const (47)
H

n=1
and from (45) and (J2) it follows easily that

max |E"|%, < const 48
1§ngml Wy < (48)

forall 0 < k < ko. In the end, we use (32), (44) to see that

max |w const 49
1<n<m | k |H = ( )

forall0 < k < ko.

Step lI: Limit procedureLet us define the piecewise linear interpolate
we(x, (n + k) == sul ™ x) + (1 — s)ul(x), s € (0,1],

and the piecewise constant interpolates
i (x, (n +9)k) == u T (x), s€(0,1],
Wi (x, (n +9)k) = witt(x), se (01
Ei(x, (n +9)k) = 21 x), se€(01
fix, (n 4+ $)k) := fF(x), se (1],

’

’

|
]
]
|

foralln =0, ... ,m—1. Using these definition it is possible to rewrite the problem
(P): as follows:
W (1) + Wi (1) + Ait (1) + Ex(t) = fi(r), inV*, (50)
wi(x, 1) = Wlitg(x, -); x](¢), a.e.ing, (51)
Er(x, 1) € 3j(x, ix(x, 1)), a.e.inQ (52)

forallr € (O, T). Due to (45)—(49) we know that

Nyl 20,7 11ys Nkl Looo,:vys Nkl oo 0,7 v (53)

el oo.75 1y | Ekll oo co,7: )
are bounded for all & k& < kg

Due to the a priori estimates (53) we know that there exist subsequences and

limit functions such that

uy — u, weaklyinHY0,T;H) and weak—in L®(0,T;V), (54)

i — u, weak=inL>*0,T;V), (55)

wr — w, weak-=inL*(,T; H), (56)

Er — B, weak=inL>0,T;H), (57)
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ask — 0+. Moreover, from (46) we deduce that

o[ nk —t\?
- 2 -1,2
”l/tk - uk||L2(O,T;H) = E ‘/( ( ) |uz - MZ |H dr (58)
n=1

n—1)k k

m m
< ZH”Z — uflﬁ{ < kClz lup — uzfllﬁ, —- 0, ask—0+.
n=1 n=1

As a consequence of this we get that u.

We multiply (50) byv € L3(0, T; V) and integrate it ove(0, T). Using the
convergence results (54)—(57J, — f strongly in L2(0, T; H) and the weak
continuity of A we get (14).

In order to prove (15) we need the following compactness result [1, 25],

HY0,T; H)N L®(0, T; V) is compactly imbedded if?(2; C([0, T])).

(59)
Thus, recalling (54) we know that
up — u, strongly inL3($; C([0, T1)) (60)
and, consequently,
uy — u, uniformly in[0, 7] a.e. inQ. (61)

We use the following generalized majorized convergence theorem ([26, Appendix])
for proving that the sequende; (x, 1) = W[ux(x, -); x](¢)} converges strongly to
w*(x, 1) = Wlu(x, -); x](¢) in L3(Q; C([0, T])):

Jim- /Q g0 dr = /Q Jim g(x) o (62)

if the following conditions are fulfilled:
() There exist integrable functiorig,, h satisfying the convergendg (x) —
h(x) a.e.inQ and [, i (x)dx — [, h(x)dx ask — O+.

@ii) |ge(x)| < hi(x) a.e.inQand 0< k < ko.

(iii) lim ;o4 gx(x) exists a.e. inM2.
Indeed: We set

gr(x) = ( sup |wj(x, 1) —w*(x, D)%
0L1<T

hie(x) = 2(y (x) + 1 SUP |ug(x, 1))? + 2(y (x) + 1 sup lu(x, D)2,
0<I<T 0<I<T

h(x) = 4(y(x) +c1 sup |u(x, H)])>.
o<t<T
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Due to (H) and (61) we have the following properties

sup |wi(x,t)] < y(x)+c1 sup |ug(x,t)|, fora.ex e, (63)
0<I<T 0<I<T

sup |w*(x, )| < y(x) +c1 sup |u(x,t)|, fora.ex e Q, (64)
0<I<T 0<I<T

w; — w*, uniformly in [0, 7] a.e. in. (65)

Therefore, the properties (ii), (iii) are easily satisfied. In addition, (60) implies that
h, converges strongly té in L1(Q) and, consequently, gives (i). Thus, we have
proved thatw; converges strongly te* in L?(2; C([0, T1)). Noting thatw, is the
piecewise constant interpolate ®f (wi(x,t) = w;(x, 1) = Wlu(x, -); x](¢) as

t =nk,n=1,...,m)itholds also that
sup |wi(x, )| < y(x)+c1 sup |ug(x,1)], fora.e.x e Q. (66)
0<t<T 0<t<T
wy — w*, uniformly in [0, T'] a.e. InL2. (67)

Hence, repeating the previous arguments we seeithat w* in L?(2; C([0, T])
and due to (56) als@ = w*.
The last step is to prove (16). By virtue of (57), (58), (60) we have

iy — u, strongly inL%(Qy), (68)

Er — &, weaklyinL?(Qr). (69)

Because of (68) we also have the pointwise convergenag ¢ u a.e. inQr

(by passing to a subsequence, if necessary).cLet 0 be arbitrary. Egoroff’s
theorem implies that there existsC Q7 such that meas(w) < andii, converges
uniformly in Q7\w. Thus,iy, u € L*®(Qr\w). Let¢p € L*°(Qr) be given. Then,

due to Fatou’s lemma and the upper semicontinuity of the generalized directional
derivative, we get

/ E(x,t)qb(x,t)d.xdt:lim/ Er(x, )¢ (x, 1) dx dr
QT\LU QT\a)

k—0+

< limsup Jo (e, iy (x, 1)); @ (x, 1)) dx de

k—0+ Oor\w

< / lim Sup;° ((x. i (x, 1)); ¢ (x. 1)) de dr
%)

r\o k—0+

</ 7o u(x, 1)); @ (x, 1)) dx dr. (70)
or\w

From this we can conclude

E(x,1) € 3j(x,u(x, 1), ae.in0r\w. (71)
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Letting ¢ tend to zero we get (16). This completes the proof, since the initial
condition foru is trivially satisfied.

5.2. THE PROOF OF THEOREM?

Since we no longer have the linear growth condition (J2), the proof of Theorem
1 has to be modified in many respects. Firstly, the estimate (41) is not valid.
Therefore, we have to smooth the functigrby using a mollifier and after that
to truncate its derivative. Then it is possible to repeat the previous proof for this
regularized and truncated problem (PAs the regularization and truncation pa-
rameterk tends to infinity we can use an elementary differentiation rule (cf. (88))
and the directional growth condition (J4) for controlling this nonmonotone term.
Secondly, the proof of Theorem 1 guarantees for the solution of the problem (P)
only the regularityd*(0, T; HYNL>*(0, T; V), not H(0, T; V). Thus, we cannot
estimate the ternﬁoT(Auk(t), uy (t))y dt (cf. (84)), which is essential for establish-
ing the required a priori estimates. This difficulty can be removed by working in
finite-dimensional Galerkin spac®%.

We define the regularized and truncated Galerkin problem {P¥ N. Let p
be a mollifier such thap € C*((—=1,1)),p > 0 andep(n) dn = 1. We set
ox(n) = kp(kn). Then the regularizatior, of j is defined by the convolution

Jir €)= /Rpkm)j(x,& — .
On the other hand, the truncation operator of lévisl defined as follows:

8(), 18I < k;

T L) =
() {sign(g(-))k, 1g()| > k,

whereg is a real-valued function.
Now we can formulate (R) Find functionsu;, € Y, = HYO,T; V)N
L>®(0, T; V) andwy; € L?(Q:; C([0, T])) such that

u, (1) + we(t) + Aug (1) + Tidji (-, ur (1)) = f(1), inV, (72)

wr(x, 1) = Wlur(x, ); x](¢), a.e.inQ, (73)

foralmost allr € (0, T) (92, denotes the derivative gf with respect to the second
variable) and

uk(O) = Uk, (74)

where{ug} satisfies (12).
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REMARK 5. According to [18, Lemma 5.2] Remark 3 is valid alsodgy;, k € N
with a possibly greater increasing nonnegative functipn Q x R, — R, oy
independent ok, i.e. particularly for allk € N and for almost alk € Q2

d2jk(x, 8)(n — &) < aax, )L+ |§]), VE€R, neBOr), r=0.
(75)

It is easy to see also that the truncated funcfipsy j; satisfies (75) with the same
functiona, asd, ji: Indeed, ifd,ji(x, ) > 0and(n — &) > 0 we have

Ti02jk(x, &) (n — &) < i (x, §)(n — &) < oa(x, )(L + |§])
and if 9z (x, &) > 0and (n—§) <0
d2ji(x, §)(n — &) < Tidzju(x, §)(n — &) < 0 < aalx, r) (1 + [E]).

Analogously, one can check the casg, (x, £) < 0.

Step I: Solvability of (B) We define a fully discrete approximate problem;fP)
(h is the time increment parameter): Fing, € V, andwy,, E}, € H for all
n=1...,msuchthat

n—1

u —u . n n I
% + wyy, + Augy, + Tidoji (L ug,) = fy, NV, (76)

wp, () = Wy, (x), up, (x), ..., ul,(x);x), ae.inQ, (77)
whereu?, = ug, and f; defined by (17).
Next, we repeat Steps I-lll of Section 5.1 for the problem,(R¥#4 tends to O
andk is fixed. This gives the existence result for the problem.(P)

Step II: A priori estimatesWe use a continuous analogue of the approach used in
Section 5.1. It differs essentially from the discrete one only in how we treat the
nonmonotone term.

We setv = u; (s) in (P) and integrate it ove(O, ¢). First, we define

w6, 1) = e ()] + /0 1, (x, 5)] ds (78)

being a continuous counterpart of (30). Due to an elementary estimation and (78)
we have

up(x, 1) = ugr(x) +/ up(x,s)ds
0

< uge(x)] +/ lup(x, )| ds = v (x, 1), Vre[0,z]. (79)
0
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Moreover, the condition (H) and (79) implies that

wi(x, 1) < y(x) +c1 sup Jug(x, )| < y(x) + crv(x, ). (80)
0<s<t

Taking into account (80) we obtain

t
f (Wi (5), 1, () B < [10el 1200000 1L 220000
0

< C1OY15 + CL@Nel 220, + €N 20,11 (81)

Next, we estimate as in (34)
"d
v — Q)| g = / d—|vk(S)|H ds
o Gas
t
/ i /
< fo e B < THI0 20 (82)
and use the relationy (x, t) = |u; (x, t)| to deduce

1
”uk”Lz(Ot H) — ||Uk||L2(Ot H) / |vk(t)|[-1 C]_|U]((O)|§_I (83)

From the conditions (Al), (A2) it foIIows
t 1 t d
f(Auk@),u;(s))vds:—f L Aue(s), ()} s
0 2 0 dS

1
(Aup (@), ur())y — E(AMOk’ UoK) v

I—‘NIH

—(Auok, Uo)v-

1 2
> Zeollur 2 — 263|Mk(f)|H -3
(84)

N

A simple calculation shows that

1 t
S0l |u0k|H / S (5), w5y s = / (u(5), 16, () ds
< elluplZ2 e + C2(O) il T2, - (85)
Combining this with (84) we get
4 1
(Aug(s), up (5))y ds ==callug (1% — ecallugll?
0 k s U \% /2 2114k 174 31Uy L2(0,¢; H)
— Ca(e)ealluil| 2 .y — Co- (86)

Furthermore, it holds

fo (F5), ) o < Co(e) + el 2o (87)
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We define a truncated functian of u; as follows (as a matter of fadf (-) =

T1ui(+)):

ur(x, 1), luk(x, )] < 15

= [sigr(uk<x, ).l 0l > 1

Using an elementary differentiation rule we can rewrfg’g(Tkazjk(-,uk(s)),

u, (s)) g ds in the following form

t
f f Tid2ji (x, ug (x, 8))uy (x, s) dx ds
0 Q

t d ur(x,s)
- [&] neie o
0 JQ 0

td ur(x,s)
=/ aff Tedoji(x, £) d v ds
0 QJ0

ug(x,1) o (x)
=// Tkazjk(x,g)dsdx_// Ty 02 (x, &) d& dx.
o Jo e Jo

Due to the definition ofj, we have

ug(x,t) Vg (x,1)
// T 02 (x, &) d& dx =// Ty 02 (x, &) d& dx
o Jo o Jo

ug(x,t)
+/ Ti02jk (x, &) d& dx.
Q

Vg (x,1)

For the first term in (89) it holds

e (x.)
|// Tkazjk(x,g)dédx| </ max | 702k (x, &)| dx
QJo Qé 1]

e[-1

< max |92, (x, &)| dx.
fQ  max. [0 (x, £)

By means of (J3) we can estimate as follows:

|92k (x, £)| = ‘inino/Rpk(f)J(x’s —T4n) —j(x,E—1) df‘

n
<im [ pu(o FEEEIED SIS S0 0 < pir, 9,
n—0 Jr n

as|¢| < 1. Therefore, because of (90), (91) we obtain

Vg (x,1) 1
|ffo Tedje(x, §) 6 de| <my(F 1B
Q

(88)

(89)

(90)

(91)

(92)
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We setp = 0 in (75) implying

—ETi 02k (x, &) < az(x, 0)(1+ [§]). (93)
If & > 1, (93) yields
Tid2ji(x, £) > —202(x, 0). (94)

Similarly, if & < —1 we can deduce that
Ti02ji(x, §) < 202(x, 0). (95)
Because of (94), (95) we note that

up(x,t)
/ / Tidpji(x, £) dé dx > —2 f |y (x, )]z (x, 0) dx (96)
Q Jug(x,t) Q
> —2|a2(0) | lux () |
> —elup () — Cale).

Recalling that{ue} is bounded inL>° (), i.e. [lug [l L~ < C3we get as in (90),
(91)

ug(x) 1
|//0 Tid2ji(x, &) dé dx| < muy(S)2|B(C3+ 2)|n. (97)
Q

Taking into account (92), (96), (97) we arrive at

/0 (T d2ji (- i (5)), up () ds > —ellug ()15 — Cs(e). (98)

Then combining the estimates (81), (86), (87), (98) we conclude that for all
t € (0, T]it holds

2
< Co(8) + Cr(&) Ukl 7201,y + CLE N2 2,1 11)-

Finally, we employ the relation (83) and the continuity of the imbedding H
implying

1
(L~ Cae) 220, 1) + (—Cz - 8) e (15 (99)

1 1
o Cat) o ()% + (562 - 8) i (0113 (100)

< Ca(8) + Cr(&) lurlF 201,y + CLE N0kl 2(0,11)-

We now choose such that the coefficients ¢fi(r)|2, and ||u,(7)||2 are greater
than zero. This, together with Gronwall's lemma, guarantees that

lurllLe©,7:v)s Ik llLe0, ;) < CONSE (101)
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for all k € N. Moreover, we infer from (80), (99), (101) easily

lwll Lo o,7: 1), 1y |l L20.7: 1y < CONSE (102)

forallk e N.

Finally, we establish the weak precompactness of the seqy@&ngg (1)} in
L'(Q7). According to the Dunford—Pettis theorem it is sufficient to prove that for
eache > 0 there exist$(¢) such that

f T e g (v, 1)) dx < & (103)

forallw C Qr andmy 1(w) < 8(e).
Applying (75) we see that for any> 0 (n = +£r)

Er T2 i (x, g (x, 1)) < Tidoji(x, ug (x, 1)up(x, 1) + az(x, r) (L + |ug(x, 1))
(104)

fora.e.(x,t) in Q7. Thus,

1
/lTkazjk(X,Mk(X,f)Ndxdt<—fTkazjk(X,uk(X,t))Mk(x,f)d-’Cdf (105)

-,
1 _ 1
+ ;||a2(r)”L2(w)(mN+l(a))2 + llurll L20)) s

where a functiorr, : Q x [0, T] x R, — R is defined byw,(x, t,r) = aa(x, r)
vt € [0, T']. On the other hand, the substitutigr= 0 in (75) yields

0 < Tz (x, ugc (x, 1)ug (x, 1) + a2(x, 0)(1 + |ug(x, )], (106)

fora.e.(x, t) in Qr. Hence,

/Tkazjk(x,uk(x,l))uk(x,l)dXdlé/ Ty 02k (x, uge (x, 1)) up (x, ) cx dt
15} or
—{-f az(x, 0) (1 + |ur(x, 1)]) dx dr
or

</ T3 021 (x, wi (x, t))ug(x, t) dx dt
or
_ 1
+ o201 L2¢0,) (MN11(Q7) 2 + lluk |l 200,))
< / T302,ji (x, ug (x, 1))ug(x, t) dx df + Cs, (107)
or

in which we have used (101). Taking into account (Al), (72), (101), (102) we can
deduce

/ Tidji O, i (x, 1))y (x, 1) e df < Colluag |72 7., (108)
or

+ (lugll 2.7 1) + lwellz20.7: 8y + 1 f 12207 ) Nkl L20.7: 1) < Co
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Combining the above inequalities (105), (107), (108) we find that

) C _

/ T, e, ) e ds < 2 4 Collaz(r)l (109)
Lete > 0 be given. First, we chooge> 0 big enough such that

Cs _ ¢ (110)

r 2
and next the parameté(e) small enough such that

_ &
C9||012(”)||L2(w) <3 (111)

2

for all w C Q7 satisfyingmy,1(w) < 8(e). This is possible, because for any

r > 0ax(r) € L) implies thata,(r) € L?(Qr). As a result of (109)—(111)
we have established the validity of the Dunford—Pettis’s criterion for the weak
precompactness ¢, (u)} in L1(Q7).

Step Ill: Limit ProcedureBecause of the a priori estimates (101)—(103) we know
that there exist subsequences and limit functions such that

uy — u, weaklyinHY0,T; H) and weak—in L®(0,T;V), (112)

wr — w, weak-=inL*(0,T; H), (113)

T d2jx () — B, weakly inL(Q7), (114)
ask — oo. Further, thanks to (59) we also have

up — U, strongly inL2(2; C([0, T)). (115)
Because of (72) it holds that

T T T
f (up (@), v(t) dt+f (wk(t),v(t))Hdt+/ (A(Du (1), v(1))v dr
0 0 0
T
+ [ e, vena
0

T
= / (f@®),v(t)gdt, VYveCQO,T; V). (116)
0
By means of the convergence results (112)—(114) we can take the limit of (116) as
k — oo implying
T T T
/0 '), v()n dt+/O (w®), v(®)nu dt+/O (A@u(t), v(n))y dt
T T
+/ (E@), v(t))y dt :f (f@®),v(®)pdt, YveC@OT; V).
0 0
(117)
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Recalling (11) we know that (117) is valid for alle C([0, T']; V). Therefore, we
have that

T T
/O(E(l),v(t))ydt=/o (f(O) —u'(t) —w(®), v(t)p dr

T
+f (Au(t), v(®))y dt, Vv e C(0,T]; V). (118)
0

Then, the density of ([0, T]; V) in L2(0, T; V) implies thatZ € L2(0, T; V*),
and, consequently, (14) is satisfied.

Using similar arguments as in Section 5.1 one can confirm the validity of (15).
Further, the initial condition:(0) = ug is an easy consequence of (I12) and the
convergence ofu;} to u in L(2; C ([0, T1)).

In order to complete the proof we have to show

B(x,1) €djlx,u(x,1)), ae.(x,t)eOr. (119)
Repeating the reasoning in Section 5.1 we get that foréany O there exists

w1 C Qr,mys1(w1) < 8/2, such that, converges uniformly ta in Q7\w1, and,
moreover

luxll Lo r\on» 1llLo ooy < C1,  Vk > ko (120)

for someky € N andC; a positive constant. The definition of the regularizatjpn
and (J3) permit us to estimate

i (x,§ — +60)—j L€ —
|82jk(x,§)|:|g@0‘épk(t)J(xS T ; Jjx, & —1)

< Bx, €] +2), fora.e.inQ.

dr (121)

By (J3) we know thaB(-, C1 + 2) € L?(Q). Thus, there exists, € N and a set
w> C Ot such that

)
IB(x,C1+2)| <kj, Vxs.t(x,t) € Qr\wz and myi1(wp) < >

(122)
Let us takek > max(ko, k;). Then
Tid2jik (x, up(x, 1)) = d2jix(x, u(x, 1)), in Qr\(w1U wy). (123)

Letv € L*°(Q7) be given. Using the definition of the generalized directional
derivative, Fatou's lemma and (120)—(123), we get
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/ JoO ulx, 1); v(x, 1)) dx dr
07 \(w1Vwy)

= / limsup
071 \(w1Uwp) 0(x,N—0+

n(x,1)—0
J,ulx, 1) +nx, 1) +vlx, NO(x, 1) — jlx, ulx, 1) +n(x, 1))
X dx dr
0(x, 1)
> [ limsup [ pi(o)
0 R

r\(01Uwp) 6-0+
k—o0

y Jx,up(x,t) =t +vx,1)0) — j(x,up(x,t) — 1)
6

>/ limsupdy ji (x, ug (x, t))v(x, 1) dx dt
0

7\(@1Uw2) k—o00

dr dx dr

> limsup 02k (x, up (x, 1))v(x, t) dx dr. (124)
k—o00 JOr1\(w1Uw))
By virtue of the convergence,d. i (ux) — 2 weakly in L*(Qr) and (123) we
obtain

/ Jox,u(x, t); v(x, 1)) dx dr > / E(x, H)v(x, t) dx dr.
Or\(w1Uw2) Or\(w1Uw2)
(125)
Recalling the definition of the generalized gradient the inequality (125) gives
E(x,1) € 0j(x,u(x,t)), ae.in Or\(w1Uwy). (126)
Lettings — 0+ implies (119). This completes the proof.

6. Conclusions

We have developed the mathematical theory for problems having nonsmooth, non-
monotone behaviour, and memory effects. More precisely, we considered semi-
linear parabolic B.V.P.s containing a continuous scalar hysteresis operator and a
nonmonotone term expressed by means of the generalized gradient. The advan-
tage of this formulation is that we could treat more general problems: the studied
relations (e.g. mechanical laws) could contain nonmonotone discontinuities.

We proved two general existence theorems for such problems. Basically the
proofs were based on the standard approach for parabolic problems with hys-
teresis: time—discretization, a priori estimates and limit procedure, i.e the proofs
were constructive. Therefore, we see that in possible numerical realizations the
key problem is to solve the static hemivariational inequality at each time step;
and if the static problem has a potential, the original problem can be reduced to
a sequence of problems of finding substationary points of nonconvex nonsmooth
energy functionals (we refer, for example, to [10, 11] for the practical realization).
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