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Abstract. In this paper we consider semilinear parabolic boundary value problems having non-
smooth and nonmonotone behaviour and memory effects. The mathematical problem can be for-
mulated and studied by using the notions of hemivariational inequality (based on the generalized
gradient in the sense of F.H. Clarke) and the hysteresis operator. We establish two general existence
results for such problems. Applications from mechanics illustrate the theory.
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1. Introduction

The theory of hemivariational inequalities has been developed in the last fifteen
years in order to fill the gap existing in the variational formulations of B.V.P.s when
nonsmooth and generally nonconvex energy functions are involved in the formula-
tions of the problem. For applications and for their mathematical treatment we refer
to [18, 21, 23]. When the energy functions become convex, then the hemivariational
inequalities become variational inequalities. It is well known that, due to the lack
of convexity, compactness arguments must be applied for the mathematical study
of the corresponding hemivariational inequalities. Until now eigenvalue problems
for hemivariational inequalities have been studied [5, 15, 16] as well as parabolic
and hyperbolic problems [6, 12, 13, 23].

Due to the lack of convexity and smoothness the hemivariational inequalities
have proved to be an effective tool for the treatment of problems with nonmonotonic-
ity and/or with multivaluedness. In Panagiotopoulos [23, p. 121] it is shown how
the hemivariational inequalities can describe loading and unloading processes, whereas
in [19] and [21, p. 209] it is explained how a sequence of variational inequalities
can describe the classical hysteresis phenomenon with closed and/or open loops.

Parallel to the evolution of the theory of hemivariational inequalities the theory
of hysteresis B.V.P.s has been developed. We refer in this respect to the corre-
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270 M. MIETTINEN AND P.D. PANAGIOTOPOULOS

sponding references [1, 7, 25]. This theory is based on the notion of the hysteresis
operator introduced by M.A. Krasnoselskii, which in many cases leads to dynamic
variational inequalities and does not even need to appear explicitly [1, p. 5]. In other
cases the hysteresis operator is equivalent to a system of infinitely many variational
inequalities.

A comparative study of the limitation and of the possibilities of the theory
of hemivariational inequalities with the theory of hysteresis is necessary, espe-
cially with respect to the possible applications in Mechanics, Engineering and
Economics, and it will be the subject of a forthcoming paper. The second author
of the present paper, who introduced the notion of hemivariational inequalities,
has strong evidence that the two approaches are complementary concerning the
treatment of the nonmonotone behaviour of many physical problems and of the
phase transition problems: think of a hysteresis operator, which does not have
the piecewise monotonicity or the continuity property, and which can describe
infinitely many hemivariational inequalities.

In the present paper we will study a parabolic B.V.P. resulting from the superpo-
sition of Clarke’s generalized gradient, giving rise to a hemivariational inequality,
with a continuous hysteresis operator. The organization of the paper is as follows.
In Section 2 we recall some basic notations and definitions from the nonsmooth
analysis and from the theory of the hysteresis operators. In Section 3 we give
the physical motivation for the study of this new type of B.V.P.s. This leads to
variational formulations, which are hemivariational inequalities involving a hys-
teresis operator. In Section 4 we formulate the problem under consideration and
state the existence results of Theorems 1 and 2. We have the hysteresis operator
in a lower order term, i.e. we do not have time derivatives of the hysteretic term.
These types of problems are called semilinear B.V.P.s. with memory, distinguished
from quasilinear B.V.P.s with memory, in which the hysteresis operator appears
in a higher order term (see this terminology in [25]). The fundamental difference
between these two classes is that if the hysteresis operator is in a higher order
term, then it has to be piecewise monotone. The difference between Theorem 1
and 2 is that in Theorem 1 we assume that the nonmonotone behaviour obeys the
linear growth condition (cf. (J2)), while in Theorem 2 we have only the directional
growth condition (cf. (J4)) for nonmonotonicity (which means roughly speaking
that it is ultimately increasing). In Section 5 we prove these results. In the proof
of Theorem 1 we can apply the standard approach for parabolic problems with
hysteresis (see [1, 25]). The proof of Theorem 2 is more involved: the nonsmooth
and nonmonotone term has to be regularized and truncated. Moreover, we also need
to use the Galerkin method.
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2. Preliminaries

2.1. GENERALIZED DERIVATIVES

Let us recall the definitions of the generalized directional derivative and the gen-
eralized gradient of F.H. Clarke for a locally Lipschitz functiong : R → R from
[3]:

(i) The generalized directional derivative ofg at ξ in the directionη, denoted
g◦(ξ ; η), is defined as follows:

g◦(ξ ; η) = lim sup
ξ ′→ξ,τ→0+

g(ξ ′ + τη)− g(ξ ′)
τ

.

(ii) The generalized gradient ofg at ξ , denoted∂g(ξ), is the subset ofR given
by

∂g(ξ) = {τ ∈ R : g◦(ξ ; η) > τη ∀η ∈ R}.

2.2. HYSTERESIS OPERATORS

We recall from [1] some basic concepts of the continuous hysteresis operators,
which are needed to formulate the problems under consideration (the continuity
means that the input and the output functions of the hysteresis operator are contin-
uous). For extensive treatment and examples of hysteresis operators, like Preisach,
Prandtl, elastic–plastic operators, we refer to [1, 7, 25].

Let [0, T ] be a given time interval. We denote byCpm([0, T ]) the set of all
continuous andpiecewise monotonefunctions on[0, T ]. A function v : [0, T ] →
R is piecewise monotone if there exists amonotonicity partition1 = {ti}ni=0, 0=
t0 < t1 < · · · < tn = T such thatv|[ti−1,ti ] is monotone for alli = 1, . . . n. The
monotonicity partition1 of v is called thestandard monotonicity partitionof v if
the number of the subintervalsn is minimal.

We denote byS the set of all strings of real numbers and bySA the set of all
alternating stringsof real numbers, i.e.

SA = {(s0, . . . , sn) : (si+1 − si)(si − si−1) < 0, 16 i 6 n− 1 andn ∈ N}.
We define therestriction operatorρA : Cpm([0, T ])→ SA as follows

ρA(v) = (v(t0), . . . , v(tn)), (1)

where{ti}ni=0 is the standard monotonicity partition ofv. Further, the so called
prolongation operatorπA : SA → Cpm([0, T ]) maps the strings = (s0, . . . , sn)
to the linear interpolate functionv : [0, T ] → R of the points( iT

n
, v( iT

n
) ≡ si),

i = 0, . . . , n.
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In order to be able to formulate the definition of thehysteresis operatorwe need
to introduce therate independent functionals. A functionalH : Cpm([0, T ])→ R

is called rate independent if it holds

H[v ◦ φ] = H[v] (2)

for all v ∈ Cpm([0, T ]) and for all continuous increasing functionsφ : [0, T ] → R

satisfyingφ(0) = 0 and φ(T )= T . This implies that only the local extremal
values ofv are important for theH[v]. Therefore, it is easy to see that the following
bijective correspondence [1, Proposition 2.2.5]

H = H̃ ◦ ρA, with H̃ = H ◦ πA (3)

holds between the functions̃H : SA → R and the rate independent functionals
H : Cpm([0, T ])→ R.

DEFINITION 1. An operatorW : Cpm([0, T ]) → C([0, T ]) is said to be a
hysteresis operatoron Cpm([0, T ]) if there exists a rate independent functional
H called agenerating functionalof W such that

W [v](t) = H[vt ], for all t ∈ [0, T ] andv ∈ Cpm([0, T ]), (4)

in which

vt(ξ) =
{
v(ξ), 06 ξ 6 t,

v(t), t < ξ 6 T .

Further, an operator̃W : SA→ S is called ahysteresis operatoronSA if

W̃(s) = (H̃(s0), H̃(s0, s1), . . . , H̃(s)), for all s = (s0, . . . , sn) ∈ SA,
(5)

whereH̃ = H◦πA called agenerating functionalof W̃ andH is a rate independent
functional onCpm([0, T ]).
These unique generating functionalsH andH̃ are often called thefinal value map-
pingsand are denoted byWf andW̃f , respectively. Due to (3) we also have a bi-
jective correspondence between the hysteresis operatorsW defined onCpm([0, T ])
andW̃ on SA. Therefore, in the sequel we can use the same notationW for both
W andW̃ and, consequently, the notationWf for both Wf andW̃f without any
danger of confusion. In the end, we remark that the hysteresis operators defined
onCpm([0, T ]) can be extended to the set of all continuous functionsC([0, T ]) by
using the density ofCpm([0, T ]) in C([0, T ]) (see [1, 7, 25]).

3. Physical motivation of the present paper and the corresponding problems

The semipermeability problem with hysteretic effects is the pilot problem in this
paper. Semipermeability problems were first studied by Duvaut and Lions [4] for
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HYSTERESIS AND HEMIVARIATIONAL INEQUALITIES 273

Figure 1. Semipermeability relations without hysteretic effects.

monotone semipermeability conditions. They lead to variational inequalities con-
nected with the1-operator and they arise in heat conduction, flow through porous
media, and electrostatics. Analogously, they arise in control problems in heat con-
duction, pressure control in hydraulics etc. The case without monotonicity leads to
hemivariational inequalities and was first studied by Panagiotopoulos in [20]. We
consider an open bounded connected subset� ⊂ R

3 referred to a fixed orthogonal
Cartesian coordinate system Ox1x2x3 and we formulate the equation

−1u = f (6)

for the stationary problems. On the Lipschitz boundary0 of � we assume that

u = 0 (7)

and we assume that

f = f1+ f2+ f3, (8)

wheref2 is given,f1 is related tou with the relation

−f1 ∈ ∂j (x, u(x)), in �1 ⊂ �, (9)

wherej is a locally Lipschitz (i.e. generally nonconvex and nonsmooth) energy
function and∂j denotes its generalized gradient with respect to the second variable.
We know [18, 21, 23] that (9) describes, e.g. in the language of heat-conduction
problems, the behaviour of a semipermeable membrane of finite thickness occupy-
ing a part�1 of �, or the behaviour of temperature controller producing a�1 heat
in order to regulate the temperature in the interior of�. To give an example let us
consider Figure 1a.

When the temperature isu < h the region�1 supplies constant heat per unit
volume, saya. Whenu = h heat is supplied for constant temperature until a given
valueb is reached, the supplied heat–temperature relation follows a parabola as
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Figure 2. Superposition of nonconvex superpotential laws with hysteresis laws.

in Figure 1a, until the temperatureh1 is reached. We have a change of heat from
value−c to−d with the temperature remaining constant,u = h1, and then the heat
supply remains constant, whereas the temperatureumay increase. Analogously, in
Figure 1b a temperature-control problem is depicted in which the temperature is
regulated in order to deviate as little as possible from the interval[h1, h2].

We assume further that

−f3 =Wf (w−1(x), u(x); x), in �1, (10)

whereWf is the final value mapping of the hysteresis operatorW . The function
w−1 : � → R is called theinitial value functionof the hysteresis operatorW
defining the initial state of the hysteresis operator. The addition off1 andf3 gives
rise to hysteresis mappings of much more general form than the ones treated until
now. We can mention that in the one-dimensional case, like here, the hysteresis
curves do not need to be piecewise monotone and may contain filled-in jumps (cf.
e.g. Figure 2a, b).

REMARK 1. It is assumed that filled-in jumps in mathematical models and laws
(cf. e.g. Figures 1a, b, 2a, b) are not attributed to changes to the physical nature of
the systems. For instance, in mechanical problems such jumps can cause dynamic
effects analogous to impacts.

In the multi-dimensional case of hysteresis operators (cf. [7, p. 151] the mul-
tidimensional hysterons) the consideration of sums of hysteresis operators with
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HYSTERESIS AND HEMIVARIATIONAL INEQUALITIES 275

nonconvex superpotential laws derived by means of the notion of the generalized
gradient of Clarke generalizes the theory developed by the researchers on the hys-
teresis operators. Indeed one can avoid the convexification approach used in [7].
Moreover the direct treatment of the problem without convexification may lead in
many cases to results under less stringent assumptions, e.g. by applying the notion
of pseudomonotone multivalued mapping, analogous to [18]. Following also the
method of Naniewicz related nonconvex star-shaped sets (cf. [18, p. 223]) one can
extend the results of [7] to the case of nonconvex star-shaped characteristics (for
this notion see [7, p. 156]). Note that generally the notion of nonconvex superpo-
tentials can more easily deal with three-dimensional nonmonotonicities than the
notion of hysterons, especially with respect to mechanical laws.

Another possibility offered by the superposition of a nonconvex superpotential
law with a hysteresis law is that one can consider “fuzzy hysteretic effects”. We
mean (cf. [23, p. 77]) that the{f, u} diagram is defined by a set of points lying
within a region of given width around the initial graph of the hysteretic law. In
this casej must have a special form defined first by Rockafellar ([24, 23, p. 43]).
Let l be an open subset of the real lineR and letM be a measurable subset ofl
such that for every open and nonempty subsetI of l, meas(I ∩M) and meas(I ∩
(l −M)) are positive. Letg(u) = {b1, if u ∈ M, − b2, if u 6∈ M} andj (u) =∫ u

0 g(u
∗) du∗. Thenj is Lipschitzian and∂j (u) = [−b2, b1] for everyu ∈ l, i.e. we

have an infinite number of filled-in jumps inl. Hemivariational inequalities with
fuzzy superpotentials have been already treated in [18, p. 132].

The aim of the present paper is the study of the following B.V.P. of the parabolic
type: The problem (P) is defined as follows

u′(t)+w(t)+Au(t)+4(t) = f (t), a.e. in(0, T ),

w(x, t) =W [u(x, ·); x](t), ∀t ∈ [0, T ], a.e.x ∈ �,
4(x, t) ∈ ∂j (x, u(x, t)), a.e.(x, t) ∈ QT = �× (0, T ),
u(0) = u0.

Since we apply the method of finite differences for the time derivatives in the
existence proofs we obtain as a byproduct the existence of the solution for the
sequence{(P)nE} of the corresponding elliptic problems of (P) (of course, some
obvious modifications have to be done for the assumptions ofW , A and j ; cf.
Section 5.1 Step I): Letui be a solution of (P)iE, i = 1, . . . , n−1, then the problem
(P)nE is defined by

wn +Aun +4n = fn
wn(x) =Wf (u0(x), u1(x), . . . , un−1(x), un(x); x), a.e.x ∈ �,
4n(x) ∈ ∂j (x, un(x)), a.e.x ∈ �.

In the above B.V.P.s we have assumed that�1 ≡ � for the sake of simplicity.
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4. Mathematical formulation of the problem

Let� ⊂ R
N be a bounded domain with Lipschitz boundary∂�. LetV be a Hilbert

space such that the imbeddingV ⊂ H 1(�) is dense and continuous. ThenV ⊆
H ≡ L2(�) ⊆ V ∗ forms an evolution triple. We denote by‖ · ‖V , ‖ · ‖V ∗ and| · |H
the norms ofV , V ∗ andH , respectively. The duality pairing betweenV andV ∗ is
denoted by〈·, ·〉V and the inner product inL2(�) by (·, ·)H .

Let k ∈ N. We suppose that there exists the Galerkin basis{φ1, . . . , φk, . . . } of
C∞(�) ∩ V such that∪∞k=1Vk, Vk = {φ1, . . . , φk}, is dense inṼ ≡ V ∩ C(�) in
the following sense

∀v ∈ Ṽ ∃{vk}, vk ∈ Vk : vk → v, in V andC(�). (11)

Moreover we assume thatV ∩ C(�) is dense inV .
For the space-dependent hysteresis operatorW [·, x], which means that the hys-

teresis operator can vary with the space variablex, we impose the following as-
sumption:

(H) The hysteresis operatorW [·; x] is continuous onC([0, T ]) for everyx ∈ �
and the parametrized final value mapping

(s; x) 7→Wf (s; x)
is measurable for alls = (s0, . . . , sn) ∈ S andn ∈ N and satisfies

|Wf (s; x)| 6 γ (x)+ c1 max
i=0,... ,n

|si|, for all x ∈ �, s ∈ S andn ∈ N,

whereγ ∈ L2(�) andc1 a positive constant.

REMARK 2. We refer to [1] (e.g. Proposition 2.4.9 and Remark 3.1.1) for exam-
ples of Prandtl and Preisach type hysteresis operators and to [7] for examples of
hysterons which satisfy the conditions (H). Indeed, those results show that (H) is
not a very restrictive condition for the continuous hysteresis operators.

LetA be an operator fromV to V ∗ satisfying:
(A1) The operatorA is linear, bounded and symmetric.

(A2) The operatorA is coercive, i.e. there exist constantsc2 > 0 andc3 > 0
such that

〈Av, v〉V > c2‖v‖2V − c3|v|2H, ∀v ∈ V.

For a functionj : �× R → R we impose the following conditions:

(J1) The function satisfies the Caratheodory type conditions

(i) For all ξ ∈ R the functionx 7→ j (x, ξ) is measurable on�.
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(ii) For almost allx ∈ � the functionξ 7→ j (x, ξ) is locally Lipschitz
onR.

(J2) Linear growth condition: There exists a positive constantc4 such that

η ∈ ∂j (x, ξ) H⇒ |η| 6 c4(1+ |ξ |)
for a.e.x ∈ � and eachξ ∈ R. Moreover, the functionj (·,0) ∈ L1(�).

(J3) Integrability conditions: There exists a functionβ : � × R+ → R such
that

(i) β(·, r) ∈ L2(�) for eachr > 0,
(ii) If r ′ 6 r ′′ then for almost allx ∈ �

β(x, r ′) 6 β(x, r ′′)

and for almost allx ∈ �
|j (x, ξ)−j (x, η)|6β(x, r)|ξ−η|, ∀ξ, η∈B(0, r), r > 0.

Moreover, the functionj (·,0) ∈ L1(�).

(J4) Directional growth condition: There exists a nonnegative functionα1 :
�→ R such thatα1 ∈ L2(�) and for almost allx ∈ �

j ◦(x, ξ ;−ξ) 6 α1(x)(1+ |ξ |) ∀ξ ∈ R.

REMARK 3. Let us suppose that the conditions (J3) and (J4) hold. Using a sim-
ilar reasoning as in [18, Remark 5.6] it is possible to show that there exists a
nonnegative functionα2 : �× R+ → R such that

(i) α2(·, r) ∈ L2(�) for eachr > 0.

(ii) If r ′ 6 r ′′ then for almost allx ∈ �
α2(x, r

′) 6 α2(x, r
′′)

and for almost allx ∈ �
j ◦(x, ξ ; η − ξ) 6 α2(x, r)(1+ |ξ |), ∀ξ ∈ R, η ∈ B(0; r), r > 0.

(12)

REMARK 4. Letθ be a measurable function from�× R into R such that

γ (ξ) = ess supx∈�|θ(x, ξ)|
belongs toL∞loc(R). If the following growth condition

ess sup(x,ξ)∈�×(−∞,−ξ̄)θ(x, ξ) 6 06 ess inf(x,ξ)∈�×(ξ̄,∞)θ(x, ξ) (13)
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is satisfied with some positive constantξ̄ , a locally Lipschitz function defined by

j (x, ξ) =
∫ ξ

0
θ(x, η)dη

fulfills the assumption (J1), (J3), (J4). The condition (J2) is guaranteed only ifθ as
a function ofξ obeys a similar linear growth condition.

Further, we state the following assumptions:

(I1) The initial valueu0 ∈ V andw0 ≡ Wf (w−1(·), u0(·); ·) ∈ H .

(I2) The initial valueu0 ∈ V ∩ L∞(�) andw0 ≡ Wf (w−1(·), u0(·); ·) ∈ H .
There exists a sequence{u0k}, u0k ∈ Vk, satisfying

u0k → u0, strongly inH

andw0k ≡ Wf (w−1(·), u0k(·); ·) ∈ H . Moreover,{u0k} is bounded inV
andL∞(�).

(F) Letf ∈ L2(0, T ;H).
The functionw−1 : �→ R is the initial value function of the hysteresis operator
W representing the initial state of the hysteresis operator beforeu0 oru0k is applied
to it at timet = 0.

Let us defineY = H 1(0, T ;L2(�)) ∩ L∞(0, T ;V ). Now we can introduce a
weak formulationof the problem (P).

DEFINITION 2. A functionu ∈ Y is a solution of the problem (P) if
(i) There existw ∈ L2(�;C([0, T ])) and4 ∈ L1(QT ) ∩ L2(0, T ;V ∗) such

that ∫ T

0
(u′(t), v(t))H dt +

∫ T

0
(w(t), v(t))H dt +

∫ T

0
〈Au(t), v(t)〉V dt

+
∫ T

0
〈4(t), v(t)〉V dt =

∫ T

0
(f (t), v(t))H dt ∀v ∈ L2(0, T ;V );

(14)

w(x, t) =W [u(x, ·); x](t), ∀t ∈ [0, T ], a.e.x ∈ �; (15)

4(x, t) ∈ ∂j (x, u(x, t)) a.e.(x, t) ∈ QT . (16)

(ii) The functionu satisfies the initial conditionu(0) = u0.

In this paper we prove the following existence results for (P).

THEOREM 1. Let hypotheses (H), (A1), (A2), (J1), (J2), (I1), (F) be satisfied.
Then the problem (P) has at least one solution. Moreover, the function4 belongs
toL∞(0, T ;H).
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THEOREM 2. Let hypotheses (H), (A1), (A2), (J1), (J3), (J4), (I2), (F) be satis-
fied. Then the problem (P) has at least one solution.

5. The proofs of the main theorems

5.1. THE PROOF OF THEOREM1

We use the standard approach for parabolic problems with hysteresis: time-discretization,
a priori estimates and limit procedure (see [1, 25]).

First, we define the semidiscrete problem (P)k by applying the implicit time-
discretization: Letm ∈ N. We setk = T/m and

f nk (x) =
1

k

∫ nk

(n−1)k
f (x, t)dt, for all n = 1, . . . ,m, (17)

u0
k(x) = u0(x). (18)

The problem (P)k is formulated as follows: Findunk ∈ V andwnk ,4
n
k ∈ H for all

n = 1, . . . ,m such that

unk − un−1
k

k
+wnk +Aunk +4nk = f nk , in V ∗, (19)

wnk (x) =Wf (u
0
k(x), u

1
k(x), . . . , u

n
k(x); x), a.e. in�, (20)

4nk(x) ∈ ∂j (x, unk(x)), a.e. in�. (21)

Step I: Solvability of (P)k. For each time stepn = 1, . . . ,m we can rewrite the
equation (P)k as follows: Findunk ∈ V andwnk ,4

n
k ∈ H such that

kAunk + unk + kwnk + k4nk = kf nk + un−1
k , in V ∗, (22)

wnk (x) =Wf (u
0
k(x), u

1
k(x), . . . , u

n
k(x); x), a.e. in�, (23)

4nk(x) ∈ ∂j (x, unk(x)), a.e. in�. (24)

We assume that Problems (22)–(24) are solved for the previous time stepsi =
1, . . . , n− 1. Therefore, the functionsu0

k, . . . , u
n−1
k ∈ V are known.

We use the following result [18, Theorem 4.25] for the static hemivariational
inequalities:

THEOREM 3. LetB be a pseudomonotone operator fromV to V ∗. Suppose that
there exists a functionc : R+ → R with c(r) → ∞ as r → ∞, such that for all
v ∈ V , 〈Bv, v〉V > c(‖v‖V )‖v‖V , g is an element ofV ∗, and j̄ : � × R → R

fulfills the conditions (J1), (J2) and (J4). Then the hemivariational inequality

Bu+ 4̄ = g in V ∗ and 4̄(x) ∈ ∂j̄ (x, u(x)), a.e. in�

has a solution.
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Let us first recall the definition of the pseudomonotonicity for single-valued opera-
tors from [18, p. 25]. LetB be a mapping fromV intoV ∗. ThenB is pseudomonotone
if the following hold:

(i) B is bounded;

(ii) If {ui} is a sequence inV converging weakly tou and lim sup〈Bui, ui −
u〉V 6 0, then it holds that

lim inf 〈Bui, ui − v〉V > 〈Bu, u − v〉V , ∀v ∈ V.

In order to apply Theorem 3 we define

B := B1+ B2,

B1v := kAv + 1

2
v,

(B2v)(x) ≡ b(x, v(x)) := kWf (u
0
k(x), u

1
k(x), . . . , u

n−1
k (x), v(x); x),

j̄ (x, ξ) := kj (x, ξ)+ 1

4
ξ2,

g := kf nk + un−1
k .

We assume the time incrementk is so small that it satisfieskc3 < 1/2. Then,B1

is linear and coercive (〈B1v, v〉V > c2‖v‖2V for all v ∈ V ) and, consequently,
maximal monotone andD(B1) = V (D(B1) = {v ∈ V : B1(v) 6= ∅}). Thus, [18,
Proposition 2.3] implies thatB1 is pseudomonotone.

Using (H) and the fact thatu0
k, . . . , u

n−1
k belong toV we see that the function

b : � × R → R satisfies the classical Carathéodory conditions and the growth
condition

|b(x, ξ)| 6 kγ̄ (x)+ kC1|ξ |, for all (x, ξ) ∈ RN × R, (25)

whereγ̄ is a nonnegative function fromL2(�) andC1 a positive constant. There-
fore,B2 is a continuous and bounded Nemyckii operator fromL2(�) toL2(�) (see
e.g. [26, Proposition 26.7]), which, of course, implies thatB2 is pseudomonotone
as an operator fromV to V ∗.

Next we apply the result that the sum of two pseudomonotone operators is
pseudomonotone (see e.g. [18, Proposition 2.4]) toB. Further, it is easy to see
thatB satisfies the coercivity in the sense of Theorem 3 ifk is small enough.

Finally, we observe that̄j satisfies (J1), (J2) and (J4) ifk is small enough.
Thus, all the assumptions of Theorem 3 are satisfied and Problems (22)–(24) have
solutions.
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Step II: A priori estimates.In derivation of the a priori estimates we apply repeat-
edly the classical relations:

(a − b)a = 1

2
a2− 1

2
b2+ 1

2
(a − b)2, ∀a, b ∈ R; (26)

ab 6 εa2+ 1

4ε
b2, ∀a, b ∈ R, ∀ε > 0. (27)

We multiply the Equation (19) byunk − un−1
k and sum it fromn = 1 to n = l,

16 l 6 m. Then we estimate the result term by term.
First, we treat the term coming from the hysteresis operator. The use of the

Cauchy–Schwartz inequality and (27) yield

l∑
n=1

(wnk , u
n
k − un−1

k )H 6

(
l∑

n=1

k|wnk |2H
)1/2( l∑

n=1

k

∣∣∣unk − un−1
k

k

∣∣∣2
H

)1/2

(28)

6 C1(ε)

l∑
n=1

k|wnk |2H + ε
l∑

n=1

k

∣∣∣unk − un−1
k

k

∣∣∣2
H

for all ε > 0, whereC1(ε) > 0 is a constant depending only onε. For estimating
|wnk |H in (28) we apply the inequality of (H) giving

|wnk (x)| 6 γ (x)+ c1 sup
06i6n

|uik(x)|. (29)

Setting

vik(x) = |u0(x)| +
i∑

j=1

|ujk(x)− uj−1
k (x)|, i = 0, . . . , n (30)

and noting that the triangle inequality implies

|uik(x)| 6 vik(x) 6 vi+1
k (x) 6 · · · 6 vnk (x), i = 0, . . . , n (31)

we can simplify the relation (29) as follows

|wnk (x)| 6 γ (x)+ c1v
n
k (x). (32)

Then we substitute (32) into (28) yielding

l∑
n=1

(wnk , u
n
k − un−1

k )H 6 2C1(ε)T |γ |2H + 2C1(ε)c
2
1

l∑
n=1

k|vnk |2H

+ ε
l∑

n=1

k

∣∣∣unk − un−1
k

k

∣∣∣2
H
. (33)
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Next, we show an auxiliary inequality. Indeed, due to an easy calculation we
get that

|vlk|H − |v0
k |H =

l∑
n=1

{|vnk |H − |vn−1
k |H

}
6

l∑
n=1

|vnk − vn−1
k |H

6 T
1
2

(
l∑

n=1

k

∣∣∣vnk − vn−1
k

k

∣∣∣2
H

) 1
2

. (34)

By means of a useful relation|vnk − vn−1
k |H = |unk −un−1

k |H and the inequality (34)
we conclude that

l∑
n=1

(
unk − un−1

k

k
, unk − un−1

k

)
H

=
l∑

n=1

k

∣∣∣unk − un−1
k

k

∣∣∣2
H
=

l∑
n=1

k

∣∣∣vnk − vn−1
k

k

∣∣∣2
H

>
1

2T
|vlk|2H − C1|u0|2H . (35)

The use of (26), (A1) and (A2) implies

l∑
n=1

〈Aunk , unk − un−1
k 〉V =

1

2

l∑
n=1

(〈Aunk , unk〉V − 〈Aun−1
k , un−1

k 〉V

+〈A(unk − un−1
k ), unk − un−1

k 〉V
)

=1

2
〈Aulk, ulk〉V −

1

2
〈Au0, u0〉V

+ 1

2

l∑
n=1

〈A(unk − un−1
k ), unk − un−1

k 〉V

>

(
1

2
c2‖ulk‖2V +

1

2
c2

l∑
n=1

‖unk − un−1
k ‖2V

)

− 1

2
〈Au0, u0〉V

+
(
−1

2
c3|ulk|2H −

1

2
c3

l∑
n=1

|unk − un−1
k |2H

)
. (36)
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In (36) we need further estimates for|ulk|2H and
∑l

n=1 |unk −un−1
k |2H . Applying once

again (26) we get

1

2
|ulk|2H −

1

2
|u0
k|2H +

1

2

l∑
n=1

|unk − un−1
k |2H

=
l∑

n=1

1

2

(|unk |2H − |un−1
k |2H + |unk − un−1

k |2H
)

=
l∑

n=1

k

(
unk − un−1

k

k
, unk

)
H

. (37)

By rearranging the terms in (37) and using (27) we have

1

2
|ulk|2H +

1

2

l∑
n=1

|unk − un−1
k |2H 6

1

2
|u0|2H + ε

l∑
n=1

k

∣∣∣unk − un−1
k

k

∣∣∣2
H

+ C2(ε)

l∑
n=1

k|unk |2H . (38)

After substitution of (38) in (36) we can conclude

l∑
n=1

〈Aunk , unk − un−1
k 〉V >

(
1

2
c2‖ulk‖2V +

1

2
c2

l∑
n=1

‖unk − un−1
k ‖2V

)

− c3ε

l∑
n=1

k

∣∣∣unk − un−1
k

k

∣∣∣2
H

− c3C2(ε)

l∑
n=1

k|unk |2H − C2. (39)

Furthermore, the Cauchy–Schwartz inequality and (27) imply

l∑
n=1

(f nk , u
n
k − un−1

k )H 6

(
l∑

n=1

k|f nk |2H
)1/2( l∑

n=1

k

∣∣∣unk − un−1
k

k

∣∣∣2
H

)1/2

6 C3(ε)+ ε
l∑

n=1

k

∣∣∣unk − un−1
k

k

∣∣∣2
H
. (40)
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Similarly, and taking into account the linear growth condition (J2), we have

l∑
n=1

(4nk, u
n
k − un−1

k )H 6

(
l∑

n=1

k|4nk |2H
)1/2( l∑

n=1

k

∣∣∣unk − un−1
k

k

∣∣∣2
H

)1/2

(41)

6 C4(ε)

(
1+

l∑
n=1

k|unk |2H
)
+ ε

l∑
n=1

k

∣∣∣unk − un−1
k

k

∣∣∣2
H
.

Summarizing the estimates (33), (39), (40), (41) and applying the continuity of
the imbeddingV ⊂ H we deduce that

(1− C3ε)

l∑
n=1

k

∣∣∣unk − un−1
k

k

∣∣∣2
H
+
(

1

2
c2− C5(ε)k

)
‖ulk‖2V

+ 1

2
c2

l∑
n=1

‖unk − un−1
k ‖2V

6 C6(ε)+ C7(ε)

l−1∑
n=1

k‖unk‖2V + C8(ε)

l∑
n=1

k|vnk |2H . (42)

Finally, as a result of (35) we arrive at

1

2T
(1− C3ε − 2T C8(ε)k) |vlk|2H +

(
1

2
c2 − C5(ε)k

)
‖ulk‖2V

+ 1

2
c2

l∑
n=1

‖unk − un−1
k ‖2V

6 C9(ε)+ C7(ε)

l−1∑
n=1

k‖unk‖2V + C8(ε)

l−1∑
n=1

k|vnk |2H . (43)

We first chooseε small enough such that 1− C3ε > 1/2. This fixes the constants
Ci(ε). Then, we choosek so small that the coefficients(1− C3ε − 2T C8(ε)k)

and(1/2c2 − C5(ε)k) are positive. After that we can apply the discrete version of
Gronwall’s lemma implying

max
16n6m

|vnk |2H 6 const, (44)

max
16n6m

‖unk‖2V 6 const, (45)

m∑
n=1

‖unk − un−1
k ‖2V 6 const (46)
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for all 0< k 6 k0. Further, taking into account (44), (45) we can derive from (42)
that

m∑
n=1

k

∣∣∣unk − un−1
k

k

∣∣∣2
H
6 const, (47)

and from (45) and (J2) it follows easily that

max
16n6m

|4nk |2H 6 const (48)

for all 0< k 6 k0. In the end, we use (32), (44) to see that

max
16n6m

|wnk |2H 6 const (49)

for all 0< k 6 k0.

Step III: Limit procedure.Let us define the piecewise linear interpolate

uk(x, (n+ s)k) := sun+1
k (x)+ (1− s)unk(x), s ∈ (0,1],

and the piecewise constant interpolates

ūk(x, (n+ s)k) := un+1
k (x), s ∈ (0,1],

w̄k(x, (n+ s)k) := wn+1
k (x), s ∈ (0,1],

4̄k(x, (n+ s)k) := 4n+1
k (x), s ∈ (0,1],

f̄k(x, (n+ s)k) := f n+1
k (x), s ∈ (0,1],

for all n = 0, . . . ,m−1. Using these definition it is possible to rewrite the problem
(P)k as follows:

u′k(t)+ w̄k(t)+Aūk(t)+ 4̄k(t) = f̄k(t), in V ∗, (50)

w̄k(x, t) =W [ūk(x, ·); x](t), a.e. in�, (51)

4̄k(x, t) ∈ ∂j (x, ūk(x, t)), a.e. in� (52)

for all t ∈ (0, T ). Due to (45)–(49) we know that

‖u′k‖L2(0,T ;H), ‖uk‖L∞(0,T ;V ), ‖ūk‖L∞(0,T ;V ), (53)

‖w̄k‖L∞(0,T ;H), ‖4̄k‖L∞(0,T ;H)
are bounded for all 0< k 6 k0.

Due to the a priori estimates (53) we know that there exist subsequences and
limit functions such that

uk → u, weakly inH 1(0, T ;H) and weak–∗in L∞(0, T ;V ), (54)

ūk → ū, weak–∗ in L∞(0, T ;V ), (55)

w̄k → w, weak–∗ in L∞(0, T ;H), (56)

4̄k → 4, weak–∗ in L∞(0, T ;H), (57)
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ask→ 0+. Moreover, from (46) we deduce that

‖uk − ūk‖2L2(0,T ;H) =
m∑
n=1

∫ nk

(n−1)k

(
nk − t
k

)2

|unk − un−1
k |2H dt (58)

6

m∑
n=1

k|unk − un−1
k |2H 6 kC1

m∑
n=1

‖unk − un−1
k ‖2V → 0, ask→ 0+ .

As a consequence of this we get thatū = u.
We multiply (50) byv ∈ L2(0, T ;V ) and integrate it over(0, T ). Using the

convergence results (54)–(57),̄fk → f strongly inL2(0, T ;H) and the weak
continuity ofA we get (14).

In order to prove (15) we need the following compactness result [1, 25],

H 1(0, T ;H) ∩ L∞(0, T ;V ) is compactly imbedded inL2(�;C([0, T ])).
(59)

Thus, recalling (54) we know that

uk → u, strongly inL2(�;C([0, T ])) (60)

and, consequently,

uk → u, uniformly in [0, T ] a.e. in�. (61)

We use the following generalized majorized convergence theorem ([26, Appendix])
for proving that the sequence{w∗k (x, t) = W [uk(x, ·); x](t)} converges strongly to
w∗(x, t) =W [u(x, ·); x](t) in L2(�;C([0, T ])):

lim
k→0+

∫
�

gk(x)dx =
∫
�

lim
k→0+

gk(x)dx (62)

if the following conditions are fulfilled:
(i) There exist integrable functionshk, h satisfying the convergencehk(x)→

h(x) a.e. in� and
∫
�
hk(x)dx → ∫

�
h(x)dx ask→ 0+.

(ii) |gk(x)| 6 hk(x) a.e. in� and 0< k 6 k0.

(iii) lim k→0+ gk(x) exists a.e. in�.
Indeed: We set

gk(x) = ( sup
06t6T

|w∗k (x, t)−w∗(x, t)|)2,

hk(x) = 2(γ (x)+ c1 sup
06t6T

|uk(x, t)|)2 + 2(γ (x)+ c1 sup
06t6T

|u(x, t)|)2,

h(x) = 4(γ (x)+ c1 sup
06t6T

|u(x, t)|)2.
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Due to (H) and (61) we have the following properties

sup
06t6T

|w∗k (x, t)| 6 γ (x)+ c1 sup
06t6T

|uk(x, t)|, for a.e.x ∈ �, (63)

sup
06t6T

|w∗(x, t)| 6 γ (x)+ c1 sup
06t6T

|u(x, t)|, for a.e.x ∈ �, (64)

w∗k → w∗, uniformly in [0, T ] a.e. in�. (65)

Therefore, the properties (ii), (iii) are easily satisfied. In addition, (60) implies that
hk converges strongly toh in L1(�) and, consequently, gives (i). Thus, we have
proved thatw∗k converges strongly tow∗ in L2(�;C([0, T ])). Noting thatw̄k is the
piecewise constant interpolate ofw∗k (w̄k(x, t) = w∗k (x, t) = W [uk(x, ·); x](t) as
t = nk, n = 1, . . . ,m) it holds also that

sup
06t6T

|w̄k(x, t)| 6 γ (x)+ c1 sup
06t6T

|uk(x, t)|, for a.e.x ∈ �. (66)

w̄k → w∗, uniformly in [0, T ] a.e. in�. (67)

Hence, repeating the previous arguments we see thatw̄k → w∗ in L2(�;C([0, T ])
and due to (56) alsow = w∗.

The last step is to prove (16). By virtue of (57), (58), (60) we have

ūk → u, strongly inL2(QT ), (68)

4̄k → 4, weakly inL2(QT ). (69)

Because of (68) we also have the pointwise convergence ofūk to u a.e. inQT

(by passing to a subsequence, if necessary). Letε > 0 be arbitrary. Egoroff’s
theorem implies that there existsω ⊂ QT such that meas(ω) < εandūk converges
uniformly inQT \ω. Thus,ūk, u ∈ L∞(QT \ω). Let φ ∈ L∞(QT ) be given. Then,
due to Fatou’s lemma and the upper semicontinuity of the generalized directional
derivative, we get∫

QT \ω
4(x, t)φ(x, t)dx dt = lim

k→0+

∫
QT \ω

4̄k(x, t)φ(x, t)dx dt

6 lim sup
k→0+

∫
QT \ω

j ◦((x, ūk(x, t));φ(x, t))dx dt

6

∫
QT \ω

lim sup
k→0+

j ◦((x, ūk(x, t));φ(x, t))dx dt

6

∫
QT \ω

j ◦((x;u(x, t));φ(x, t))dx dt. (70)

From this we can conclude

4(x, t) ∈ ∂j (x, u(x, t)), a.e. inQT \ω. (71)
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Letting ε tend to zero we get (16). This completes the proof, since the initial
condition foru is trivially satisfied.

5.2. THE PROOF OF THEOREM2

Since we no longer have the linear growth condition (J2), the proof of Theorem
1 has to be modified in many respects. Firstly, the estimate (41) is not valid.
Therefore, we have to smooth the functionj by using a mollifier and after that
to truncate its derivative. Then it is possible to repeat the previous proof for this
regularized and truncated problem (P)k. As the regularization and truncation pa-
rameterk tends to infinity we can use an elementary differentiation rule (cf. (88))
and the directional growth condition (J4) for controlling this nonmonotone term.
Secondly, the proof of Theorem 1 guarantees for the solution of the problem (P)k

only the regularityH 1(0, T ;H)∩L∞(0, T ;V ), notH 1(0, T ;V ). Thus, we cannot
estimate the term

∫ T
0 〈Auk(t), u′k(t)〉V dt (cf. (84)), which is essential for establish-

ing the required a priori estimates. This difficulty can be removed by working in
finite-dimensional Galerkin spacesVk.

We define the regularized and truncated Galerkin problem (P)k, k ∈ N. Let ρ
be a mollifier such thatρ ∈ C∞0 ((−1,1)), ρ > 0 and

∫
R
ρ(η)dη = 1. We set

ρk(η) ≡ kρ(kη). Then the regularizationjk of j is defined by the convolution

jk(x, ξ) =
∫
R

ρk(η)j (x, ξ − η)dη.

On the other hand, the truncation operator of levelk is defined as follows:

Tkg(·) =
{
g(·), |g(·)| 6 k;
sign(g(·))k, |g(·)| > k,

whereg is a real-valued function.
Now we can formulate (P)k: Find functionsuk ∈ Yk = H 1(0, T ;Vk)∩

L∞(0, T ;Vk) andwk ∈ L2(�;C([0, T ])) such that

u′k(t)+ wk(t)+Auk(t)+ Tk∂2jk(·, uk(t)) = f (t), in V ∗k , (72)

wk(x, t) =W [uk(x, ·); x](t), a.e. in�, (73)

for almost allt ∈ (0, T ) (∂2jk denotes the derivative ofjk with respect to the second
variable) and

uk(0) = u0k, (74)

where{u0k} satisfies (I2).

jogo465.tex; 17/09/1998; 8:47; p.20



HYSTERESIS AND HEMIVARIATIONAL INEQUALITIES 289

REMARK 5. According to [18, Lemma 5.2] Remark 3 is valid also for∂2jk, k ∈ N
with a possibly greater increasing nonnegative functionα2 : � × R+ → R, α2

independent ofk, i.e. particularly for allk ∈ N and for almost allx ∈ �
∂2jk(x, ξ)(η − ξ) 6 α2(x, r)(1+ |ξ |), ∀ξ ∈ R, η ∈ B(0; r), r > 0.

(75)

It is easy to see also that the truncated functionTk∂2jk satisfies (75) with the same
functionα2 as∂2jk: Indeed, if∂2jk(x, ξ) > 0 and(η − ξ) > 0 we have

Tk∂2jk(x, ξ)(η − ξ) 6 ∂2jk(x, ξ)(η − ξ) 6 α2(x, r)(1+ |ξ |)
and if∂2jk(x, ξ) > 0 and (η− ξ) 6 0

∂2jk(x, ξ)(η − ξ) 6 Tk∂2jk(x, ξ)(η − ξ) 6 06 α2(x, r)(1+ |ξ |).
Analogously, one can check the case∂2jk(x, ξ) 6 0.

Step I: Solvability of (P)k. We define a fully discrete approximate problem (P)kh

(h is the time increment parameter): Findunkh ∈ Vk andwnkh,4
n
kh ∈ H for all

n = 1, . . . ,m such that

unkh − un−1
kh

h
+wnkh +Aunkh + Tk∂2jk(·, unkh) = f nh , in V ∗k , (76)

wnkh(x) =Wf (u
0
kh(x), u

1
kh(x), . . . , u

n
kh(x); x), a.e. in�, (77)

whereu0
kh = u0k andf nh defined by (17).

Next, we repeat Steps I–III of Section 5.1 for the problem (P)kh ash tends to 0
andk is fixed. This gives the existence result for the problem (P)k.

Step II: A priori estimates.We use a continuous analogue of the approach used in
Section 5.1. It differs essentially from the discrete one only in how we treat the
nonmonotone term.

We setv = u′k(s) in (P)k and integrate it over(0, t). First, we define

vk(x, t) = |u0k(x)| +
∫ t

0
|u′k(x, s)|ds (78)

being a continuous counterpart of (30). Due to an elementary estimation and (78)
we have

uk(x, r) = u0k(x)+
∫ r

0
u′k(x, s)ds

6 |u0k(x)| +
∫ t

0
|u′k(x, s)|ds = vk(x, t), ∀r ∈ [0, t]. (79)
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Moreover, the condition (H) and (79) implies that

wk(x, t) 6 γ (x)+ c1 sup
06s6t

|uk(x, s)| 6 γ (x)+ c1vk(x, t). (80)

Taking into account (80) we obtain∫ t

0
(wk(s), u

′
k(s))H ds 6 ‖wk‖L2(0,t;H)‖u′k‖L2(0,t;H)

6 C1(ε)|γ |2H + C1(ε)‖vk‖2L2(0,t;H) + ε‖u′k‖2L2(0,t;H). (81)

Next, we estimate as in (34)

|vk(t)|H − |vk(0)|H =
∫ t

0

d

ds
|vk(s)|H ds

6

∫ t

0
|v′k(s)|H ds 6 T

1
2‖v′k‖L2(0,t;H) (82)

and use the relationv′k(x, t) = |u′k(x, t)| to deduce

‖u′k‖2L2(0,t;H) = ‖v′k‖2L2(0,t;H) >
1

2T
|vk(t)|2H − C1|vk(0)|2H . (83)

From the conditions (A1), (A2) it follows∫ t

0
〈Auk(s), u′k(s)〉V ds = 1

2

∫ t

0

d

ds
〈Auk(s), uk(s)〉V ds

= 1

2
〈Auk(t), uk(t)〉V − 1

2
〈Au0k, u0k〉V

>
1

2
c2‖uk(t)‖2V −

1

2
c3|uk(t)|2H −

1

2
〈Au0k, u0k〉V .

(84)

A simple calculation shows that

1

2
|uk(t)|2H −

1

2
|u0k|2H =

1

2

∫ t

0

d

ds
(uk(s), uk(s))H ds =

∫ t

0
(uk(s), u

′
k(s))H ds

6 ε‖u′k‖2L2(0,t;H) + C2(ε)‖uk‖2L2(0,t;H). (85)

Combining this with (84) we get∫ t

0
〈Auk(s), u′k(s)〉V ds >

1

2
c2‖uk(t)‖2V − εc3‖u′k‖2L2(0,t;H)

− C2(ε)c3‖uk‖2L2(0,t;H) − C2. (86)

Furthermore, it holds∫ t

0
(f (s), u′k(s))H dt 6 C3(ε)+ ε‖u′k‖2L2(0,t;H). (87)
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We define a truncated function̄vk of uk as follows (as a matter of factv̄k(·) =
T1uk(·)):

v̄k(x, t) =
{
uk(x, t), |uk(x, t)| 6 1;
sign(uk(x, t)), |uk(x, t)| > 1.

Using an elementary differentiation rule we can rewrite
∫ t

0(Tk∂2jk(·, uk(s)),
u′k(s))H ds in the following form∫ t

0

∫
�

Tk∂2jk(x, uk(x, s))u
′
k(x, s)dx ds

=
∫ t

0

∫
�

d

ds

∫ uk(x,s)

0
Tk∂2jk(x, ξ)dξ dx ds

=
∫ t

0

d

ds

∫
�

∫ uk(x,s)

0
Tk∂2jk(x, ξ)dξ dx ds

=
∫
�

∫ uk(x,t)

0
Tk∂2jk(x, ξ)dξ dx −

∫
�

∫ u0k(x)

0
Tk∂2jk(x, ξ)dξ dx. (88)

Due to the definition of̄vk we have∫
�

∫ uk(x,t)

0
Tk∂2jk(x, ξ)dξ dx =

∫
�

∫ v̄k(x,t)

0
Tk∂2jk(x, ξ)dξ dx

+
∫
�

∫ uk(x,t)

v̄k(x,t)

Tk∂2jk(x, ξ)dξ dx. (89)

For the first term in (89) it holds∣∣∣ ∫
�

∫ v̄k(x,t)

0
Tk∂2jk(x, ξ)dξ dx

∣∣∣ 6 ∫
�

max
ξ∈[−1,1]

|Tk∂2jk(x, ξ)|dx (90)

6

∫
�

max
ξ∈[−1,1]

|∂2jk(x, ξ)|dx.

By means of (J3) we can estimate as follows:

|∂2jk(x, ξ)| =
∣∣∣ lim
η→0

∫
R

ρk(τ)
j (x, ξ − τ + η)− j (x, ξ − τ)

η
dτ
∣∣∣ (91)

6 lim
η→0

∫
R

ρk(τ)

∣∣∣j (x, ξ + η − τ)− j (x, ξ − τ)
η

∣∣∣ dτ 6 β(x,3),
as|ξ | 6 1. Therefore, because of (90), (91) we obtain∣∣∣ ∫

�

∫ v̄k(x,t)

0
Tk∂2jk(x, ξ)dξ dx

∣∣∣ 6 mN(�) 1
2 |β(3)|H . (92)
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We setη = 0 in (75) implying

−ξTk∂2jk(x, ξ) 6 α2(x,0)(1+ |ξ |). (93)

If ξ > 1, (93) yields

Tk∂2jk(x, ξ) > −2α2(x,0). (94)

Similarly, if ξ 6 −1 we can deduce that

Tk∂2jk(x, ξ) 6 2α2(x,0). (95)

Because of (94), (95) we note that∫
�

∫ uk(x,t)

v̄k(x,t)

Tk∂2jk(x, ξ)dξ dx > −2
∫
�

|uk(x, t)|α2(x,0)dx (96)

> −2|α2(0)|H |uk(t)|H
> −ε‖uk(t)‖2V − C4(ε).

Recalling that{u0k} is bounded inL∞(�), i.e.‖u0k‖L∞(�) 6 C3 we get as in (90),
(91) ∣∣∣ ∫

�

∫ u0(x)

0
Tk∂2jk(x, ξ)dξ dx

∣∣∣ 6 mN(�) 1
2 |β(C3+ 2)|H . (97)

Taking into account (92), (96), (97) we arrive at∫ t

0
(Tk∂2jk(·, uk(s)), u′k(s))H ds > −ε‖uk(t)‖2V − C5(ε). (98)

Then combining the estimates (81), (86), (87), (98) we conclude that for all
t ∈ (0, T ] it holds

(1− C4ε)‖u′k‖2L2(0,t;H) +
(

1

2
c2− ε

)
‖uk(t)‖2V (99)

6 C6(ε)+ C7(ε)‖uk‖2L2(0,t;V) + C1(ε)‖vk‖2L2(0,t;H).

Finally, we employ the relation (83) and the continuity of the imbeddingV ⊂ H
implying

1

2T
(1− C4ε)|vk(t)|2H +

(
1

2
c2 − ε

)
‖uk(t)‖2V (100)

6 C8(ε)+ C7(ε)‖uk‖2L2(0,t;V) + C1(ε)‖vk‖2L2(0,t;H).

We now chooseε such that the coefficients of|vk(t)|2H and‖uk(t)‖2V are greater
than zero. This, together with Gronwall’s lemma, guarantees that

‖uk‖L∞(0,T ;V ), ‖vk‖L∞(0,T ;H) 6 const (101)
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for all k ∈ N. Moreover, we infer from (80), (99), (101) easily

‖wk‖L∞(0,T ;H), ‖u′k‖L2(0,T ;H) 6 const (102)

for all k ∈ N.
Finally, we establish the weak precompactness of the sequence{Tk∂2jk(uk)} in

L1(QT ). According to the Dunford–Pettis theorem it is sufficient to prove that for
eachε > 0 there existsδ(ε) such that∫

ω

|Tk∂2jk(x, uk(x, t))|dx dt < ε (103)

for all ω ⊂ QT andmN+1(ω) < δ(ε).
Applying (75) we see that for anyr > 0 (η = ±r)
±rTk∂2jk(x, uk(x, t)) 6 Tk∂2jk(x, uk(x, t))uk(x, t)+ α2(x, r)(1+ |uk(x, t)|)

(104)

for a.e.(x, t) inQT . Thus,∫
ω

|Tk∂2jk(x, uk(x, t))|dx dt 6
1

r

∫
ω

Tk∂2jk(x, uk(x, t))uk(x, t)dx dt (105)

+ 1

r
‖ᾱ2(r)‖L2(ω)(mN+1(ω)

1
2 + ‖uk‖L2(ω)),

where a function̄α2 : �× [0, T ] × R+ → R is defined byᾱ2(x, t, r) = α2(x, r)

∀t ∈ [0, T ]. On the other hand, the substitutionη = 0 in (75) yields

06 Tk∂2jk(x, uk(x, t))uk(x, t)+ α2(x,0)(1+ |uk(x, t)|), (106)

for a.e.(x, t) inQT . Hence,∫
ω

Tk∂2jk(x, uk(x, t))uk(x, t)dx dt 6
∫
QT

Tk∂2jk(x, uk(x, t))uk(x, t)dx dt

+
∫
QT

α2(x,0)(1+ |uk(x, t)|)dx dt

6

∫
QT

Tk∂2jk(x, uk(x, t))uk(x, t)dx dt

+ ‖ᾱ2(0)‖L2(QT )
(mN+1(QT )

1
2 + ‖uk‖L2(QT )

)

6

∫
QT

Tk∂2jk(x, uk(x, t))uk(x, t)dx dt + C5, (107)

in which we have used (101). Taking into account (A1), (72), (101), (102) we can
deduce∫

QT

Tk∂2jk(x, uk(x, t))uk(x, t)dx dt 6 C6‖uk‖2L2(0,T ;V ) (108)

+ (‖u′k‖L2(0,T ;H) + ‖wk‖L2(0,T ;H) + ‖f ‖L2(0,T ;H))‖uk‖L2(0,T ;H) 6 C7.
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Combining the above inequalities (105), (107), (108) we find that∫
ω

|Tk∂2jk(x, uk(x, s))|dx ds 6
C8

r
+ C9‖ᾱ2(r)‖L2(ω). (109)

Let ε > 0 be given. First, we chooser > 0 big enough such that

C8

r
<
ε

2
, (110)

and next the parameterδ(ε) small enough such that

C9‖ᾱ2(r)‖L2(ω) <
ε

2
(111)

for all ω ⊂ QT satisfyingmN+1(ω) < δ(ε). This is possible, because for any
r > 0 α2(r) ∈ L2(�) implies thatᾱ2(r) ∈ L2(QT ). As a result of (109)–(111)
we have established the validity of the Dunford–Pettis’s criterion for the weak
precompactness of{Tk∂2jk(uk)} in L1(QT ).

Step III: Limit Procedure.Because of the a priori estimates (101)–(103) we know
that there exist subsequences and limit functions such that

uk → u, weakly inH 1(0, T ;H) and weak–∗in L∞(0, T ;V ), (112)

wk → w, weak–∗ in L∞(0, T ;H), (113)

Tk∂2jk(uk)→ 4, weakly inL1(QT ), (114)

ask→∞. Further, thanks to (59) we also have

uk → u, strongly inL2(�;C([0, T ])). (115)

Because of (72) it holds that∫ T

0
(u′k(t), v(t))H dt +

∫ T

0
(wk(t), v(t))H dt +

∫ T

0
〈A(t)uk(t), v(t)〉V dt

+
∫ T

0
(Tk∂2jk(·, uk(t)), v(t))H dt

=
∫ T

0
(f (t), v(t))H dt, ∀v ∈ C(0, T ;Vk). (116)

By means of the convergence results (112)–(114) we can take the limit of (116) as
k→∞ implying∫ T

0
(u′(t), v(t))H dt +

∫ T

0
(w(t), v(t))H dt +

∫ T

0
〈A(t)u(t), v(t)〉V dt

+
∫ T

0
(4(t), v(t))H dt =

∫ T

0
(f (t), v(t))H dt, ∀v ∈ C(0, T ;Vk).

(117)
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Recalling (11) we know that (117) is valid for allv ∈ C([0, T ]; Ṽ ). Therefore, we
have that∫ T

0
(4(t), v(t))H dt =

∫ T

0
(f (t)− u′(t)− w(t), v(t))H dt

+
∫ T

0
〈Au(t), v(t)〉V dt, ∀v ∈ C([0, T ]; Ṽ ). (118)

Then, the density ofC([0, T ]; Ṽ ) in L2(0, T ;V ) implies that4 ∈ L2(0, T ;V ∗),
and, consequently, (14) is satisfied.

Using similar arguments as in Section 5.1 one can confirm the validity of (15).
Further, the initial conditionu(0) = u0 is an easy consequence of (I2) and the
convergence of{uk} to u in L2(�;C([0, T ])).

In order to complete the proof we have to show

4(x, t) ∈ ∂j (x, u(x, t)), a.e.(x, t) ∈ QT . (119)

Repeating the reasoning in Section 5.1 we get that for anyδ > 0 there exists
ω1 ⊂ QT ,mN+1(ω1) < δ/2, such thatuk converges uniformly tou inQT \ω1, and,
moreover

‖uk‖L∞(QT \ω1), ‖u‖L∞(QT \ω1) 6 C1, ∀k > k0 (120)

for somek0 ∈ N andC1 a positive constant. The definition of the regularizationjk
and (J3) permit us to estimate

|∂2jk(x, ξ)| =
∣∣∣ lim
θ→0

∫
R

ρk(τ)
j (x, ξ − τ + θ)− j (x, ξ − τ)

θ
dτ
∣∣∣ (121)

6 β(x, |ξ | + 2), for a.e. in�.

By (J3) we know thatβ(·, C1 + 2) ∈ L2(�). Thus, there existsk′0 ∈ N and a set
ω2 ⊂ QT such that

|β(x,C1 + 2)| 6 k′0, ∀x s.t.(x, t) ∈ QT \ω2 and mN+1(ω2) <
δ

2
.

(122)

Let us takek > max(k0, k
′
0). Then

Tk∂2jk(x, uk(x, t)) = ∂2jk(x, u(x, t)), in QT \(ω1 ∪ ω2). (123)

Let v ∈ L∞(QT ) be given. Using the definition of the generalized directional
derivative, Fatou’s lemma and (120)–(123), we get
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∫
QT \(ω1∪ω2)

j◦(x, u(x, t); v(x, t))dx dt

=
∫
QT \(ω1∪ω2)

lim sup
θ(x,t)→0+
η(x,t)→0

× j (x, u(x, t)+ η(x, t)+ v(x, t)θ(x, t))− j (x, u(x, t)+ η(x, t))
θ(x, t)

dx dt

>

∫
QT \(ω1∪ω2)

lim sup
θ→0+
k→∞

∫
R

ρk(τ)

× j (x, uk(x, t)− τ + v(x, t)θ)− j (x, uk(x, t)− τ)
θ

dτ dx dt

>

∫
QT \(ω1∪ω2)

lim sup
k→∞

∂2jk(x, uk(x, t))v(x, t)dx dt

> lim sup
k→∞

∫
QT \(ω1∪ω2)

∂2jk(x, uk(x, t))v(x, t)dx dt. (124)

By virtue of the convergenceTk∂2jk(uk) → 4 weakly inL1(QT ) and (123) we
obtain∫

QT \(ω1∪ω2)

j ◦(x, u(x, t); v(x, t))dx dt >
∫
QT \(ω1∪ω2)

4(x, t)v(x, t)dx dt.

(125)

Recalling the definition of the generalized gradient the inequality (125) gives

4(x, t) ∈ ∂j (x, u(x, t)), a.e. in QT \(ω1 ∪ ω2). (126)

Letting δ→ 0+ implies (119). This completes the proof.

6. Conclusions

We have developed the mathematical theory for problems having nonsmooth, non-
monotone behaviour, and memory effects. More precisely, we considered semi-
linear parabolic B.V.P.s containing a continuous scalar hysteresis operator and a
nonmonotone term expressed by means of the generalized gradient. The advan-
tage of this formulation is that we could treat more general problems: the studied
relations (e.g. mechanical laws) could contain nonmonotone discontinuities.

We proved two general existence theorems for such problems. Basically the
proofs were based on the standard approach for parabolic problems with hys-
teresis: time–discretization, a priori estimates and limit procedure, i.e the proofs
were constructive. Therefore, we see that in possible numerical realizations the
key problem is to solve the static hemivariational inequality at each time step;
and if the static problem has a potential, the original problem can be reduced to
a sequence of problems of finding substationary points of nonconvex nonsmooth
energy functionals (we refer, for example, to [10, 11] for the practical realization).
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